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Preface

This book is intended for the beginner as well as for the practitioner in computational
fluid dynamics (CFD). It includes two major computational methods, namely, finite
difference methods (FDM) and finite element methods (FEM) as applied to the nu-
merical solution of fluid dynamics and heat transfer problems. An equal emphasis on
both methods is attempted. Such an effort responds to the need that advantages and
disadvantages of these two major computational methods be documented and consoli-
dated into a single volume. This is important for a balanced education in the university
and for the researcher in industrial applications.

Finite volume methods (FVM), which have been used extensively in recent years,
can be formulated from either FDM or FEM. FDM is basically designed for structured
gridsin general, butis applicable also to unstructured grids by means of FVM. New ideas
on formulations and strategies for CFD in terms of FDM, FEM, and FVM continue
to emerge, as evidenced in recent journal publications. The reader will find the new
developments interesting and beneficial to his or her area of applications. However,
the subject material is often inaccessible due to barriers caused by different training
backgrounds. Therefore, in this book, the relationship among all currently available
computational methods is clarified and brought to a proper perspective.

To the uninitiated beginner, this book will serve as a convenient guide toward the
desired destination. To the practitioner, however, preferences and biases built over the
years can be relaxed and redeveloped toward other possible options. Having studied all
methods available, the reader may then be able to pursue the most reasonable directions
to follow, depending on the specific physical problems of each reader’s own field of
interest. It is toward this flexibility that the present volume is addressed.

The book begins with Part One, Preliminaries, in which the basic principles of FDM,
FEM, and FVM are illustrated by means of a simple differential equation, each leading
to the identical exact solution. Most importantly, through these examples with step-by-
step hand calculations, the concepts of FDM, FEM, and FVM can be easily understood
in terms of their analogies and differences. The introduction (Chapter 1) is followed by
the general forms of governing equations, boundary conditions, and initial conditions
encountered in CFD (Chapter 2), prior to embarking on details of CFDD methods.

Parts Two and Three cover FDM and FEM, respectively, including both historical
developments and recent contributions. FDM formulations and solutions of various
types of partial differential equations are discussed in Chapters 3 and 4, whereas the

XXi
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PREFACE

counterparts for FEM are covered in Chapters 8 through 11. Incompressible and com-
pressible flows are treated in Chapters 5 and 6 for FDM and in Chapters 12 through
14 for FEM, respectively. FVM is included under both Part Two (Chapter 7) and
Part Three (Chapter 15) in accordance with its original point of departure. Histori-
cal developments are important for the beginner, whereas the recent contributions are
included as they are required for advanced applications given in Part Five. Chapter 16,
the last chapter in Part Three, discusses the detailed comparison between FDM and
FEM and other methods in CFD.

Full-scale complex CFD projects cannot be successfully accomplished without au-
tomatic grid generation strategies. Both structured and unstructured grids are included.
Adaptive methods, computing techniques, and parallel processing are also important
aspects of the industrial CFD activities. These and other subjects are discussed in
Part Four (Chapters 17 through 20).

Finally, Part Five (Chapters 21 through 27) covers various applications including
turbulence, reacting flows and combustion, acoustics, combined mode radiative heat
transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows.

It is intended that as many methods of CFD as possible be included in this text.
Subjects that are not available in other textbooks are given full coverage. Due to a
limitation of space, however, details of some topics are reduced to a minimum by making
a reference, for further elaboration, to the original sources.

More than two decades have elapsed since the author’s earlier book on FEM in
CFD was published [McGraw-Hill, 1978]. Recent years have witnessed great progress
in FEM, paraliel with significant achievements in FDM. The author has personally
experienced the advantage of studying both methods on an equal footing. The purpose
of this book is, therefore, to share the author’s personal opinion with the reader, wishing
that this idea may lead to further advancements in CFD in the future. It is hoped that
all students in the university be given an unbiased education in all areas of CFD. It is
also hoped that the practitioners in industry benefit from many alternatives that may
impact their new directions of future research in CFD applications.
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PART ONE

PRELIMINARIES

tion of differential equations in mathematical physics and engineering. Numer-

ical solutions were carried out by hand and using desk calculators for the first
half of the twentieth century, then by digital computers for the later half of the century.
In Section 1.1, a brief summary of the history of computational fluid dynamics (CFD)
will be given, along with the organization of text.

Before we proceed with details of CFD, simple examples are presented for the
beginner, demonstrating how to solve a simple differential equation numerically by
hand calculations (Sections 1.2 through 1.7). Basic concepts of finite difference meth-
ods (FDM), finite element methods (FEM), and finite volume methods (FVM) are
easily understood by these examples, laying a foundation or providing a motivation
for further explorations. Even the undergraduate student may be brought to an ad-
equate preparation for advanced studies toward CFD. This is the main purpose of
Preliminaries.

Furthermore, in Preliminaries, we review the basic forms of partial differential equa-
tions and some of the governing equations in fluid dynamics (Sections 2.1 and 2.2).
These include nonconservation and conservation forms of the Navier-Stokes system of
equations as derived from the first law of thermodynamics and are expressed in terms
of the control volume/surface integral equations, which represent various physical
phenomena such as inviscid/viscous, compressible/incompressible, subsonic/supersonic
flows, and so on.

Typical boundary conditions are briefly summarized, with reference to hyperbolic,
parabolic, and elliptic equations (Section 2.3). Examples of Dirichlet, Neumann, and
Cauchy (Robin) boundary conditions are also examined, with additional and more
detailed boundary conditions to be discussed later in the book.

—I_ he dawn of the twentieth century marked the beginning of the numerical solu-
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1.1 GENERAL

1.1.1  HISTORICAL BACKGROUND

The development of modern computational fluid dynamics (CFD) began with the ad-
vent of the digital computer in the early 1950s. Finite difference methods (FDM) and
finite element methods (FEM), which are the basic tools used in the solution of par-
tial differential equations in general and CID in particular, have different origins. In
1910, at the Royal Society of London, Richardson presented a paper on the first FDM
solution for the stress analysis of a masonry dam. In contrast, the first FEM work was
published in the Aeronautical Science Journal by Turner, Clough, Martin, and Topp
for applications to aircraft stress analysis in 1956. Since then, both methods have been
developed extensively in fluid dynamics, heat transfer, and related areas.

Earlier applications of FDM in CFD include Courant, Friedrichs, and Lewy [1928],
Evans and Harlow [1957], Godunov [1959], Lax and Wendroff [1960], MacCormack
[1969], Briley and McDonald [1973], van Leer [1974], Beam and Warming [1978], Harten
[1978, 1983], Roe [1981, 1984], Jameson [1982], among many others. The literature on
FDM in CFD is adequately documented in many text books such as Roache [1972,
1999], Patankar [1980], Peyret and Taylor [1983], Anderson, Tannehill, and Pletcher
[1984, 1997], Hoffman [1989], Hirsch [1988, 1990], Fletcher [1988], Anderson [1995],
and Ferziger and Peric [1999], among others.

Earlier applications of FEM in CFD include Zienkiewicz and Cheung [1965], Oden
[1972,1988], Chung [1978], Hughes et al. [1982], Baker [1983], Zienkiewicz and Taylor
[1991], Carey and Oden [1986], Pironneau [1989], Pepper and Heinrich [1992]. Other
contributions of FEM in CFD for the past two decades include generalized Petrov-
Galerkin methods [Heinrich et al., 1977; Hughes, Franca, and Mallett, 1986; Johnson,
1987], Taylor-Galerkin methods [Donea, 1984; L.6hner, Morgan, and Zienkiewicz, 1985],
adaptive methods [Oden et al., 1989], characteristic Galerkin methods [Zienkiewicz
et al., 1995], discontinuous Galerkin methods [Oden, Babuska, and Baumann, 1998],
and incompressible flows [Gresho and Sani, 1999], among others.

There is a growing evidence of benefits accruing from the combined knowledge
of both FDM and FEM. Finite volume methods (FVM), because of their simple data
structure, have become increasingly popular in recent years, their formulations being
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related to both FDM and FEM. The flowfield-dependent variation (FDV) methods
[Chung, 1999] also point to close relationships between FDM and FEM. Therefore,
in this book we are seeking to recognize such views and to pursue the advantage of
studying FDM and FEM together on an equal footing.

Historically, FDMs have dominated the CFD community. Simplicity in formulations
and computations contributed to this trend. FEMs, on the other hand, are known to be
more complicated in formulations and more time-consuming in computations. However,
this is no longer the case in many of the recent developments in FEM applications. Many
examples of superior performance of FEM have been demonstrated. Our ultimate goal
is to be aware of all advantages and disadvantages of all available methods so that if
and when supercomputers grow manyfold in speed and memory storage, this knowledge
will be an asset in determining the computational scheme capable of rendering the most
accurate results, and not be limited by computer capacity. In the meantime, one may
always be able to adjust his or her needs in choosing between suitable computational
schemes and available computing resources. It is toward this flexibility and desire that
this text is geared.

1.1.2 ORGANIZATION OF TEXT

This book covers the basic concepts, procedures, and applications of computational
methods in fluids and heat transfer, known as computational fluid dynamics (CFD).
Specifically, the fundamentals of finite difference methods (FDM) and finite element
methods (FEM) are included in Parts Two and Three, respectively. Finite volume meth-
ods (FVM) are placed under both FDM and FEM as appropriate. This is because FVM
can be formulated using either FDM or FEM. Grid generation, adaptive methods, and
computational techniques are covered in Part Four. Applications to various physical
problems in fluids and heat transfer are included in Part Five.

The unique feature of this volume, which is addressed to the beginner and the prac-
titioner alike, is an equal emphasis of these two major computational methods, FDM
and FEM. Such a view stems from the fact that, in many cases, one method appears
to thrive on merits of other methods. For example, some of the recent develop-
ments in finite elements are based on the Taylor series expansion of conservation vari-
ables advanced earlier in finite difference methods. On the other hand, unstructured
grids and the implementation of Neumann boundary conditions so well adapted in finite
elements are utilized in finite differences through finite volume methods. Either finite
differences or finite elements are used in finite volume methods in which in some cases
better accuracy and efficiency can be achieved. The classical spectral methods may be
formulated in terms of FDM or they can be combined into finite elements to generate
spectral element methods (SEM), the process of which demonstrates usefulness in di-
rect numerical simulation for turbulent flows. With access to these methods, readers are
given the direction that will enable them to achieve accuracy and efficiency from their
own judgments and decisions, depending upon specific individual needs. This volume
addresses the importance and significance of the in-depth knowledge of both FDM
and FEM toward an ultimate unification of computational fluid dynamics strategies in
general. A thorough study of all available methods without bias will lead to this goal.

Preliminaries begin in Chapter 1 with an introduction of the basic concepts of all
CFD methods (FDM, FEM, and FVM). These concepts are applied to solve simple
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one-dimensional problems. It is shown that all methods lead to identical results. In this
process, it is intended that the beginner can follow every step of the solution with simple
hand calculations. Being aware that the basic principles are straightforward, the reader
may be adequately prepared and encouraged to explore further developments in the
rest of the book for more complicated problems.

Chapter 2 examines the governing equations with boundary and initial conditions
which are encountered in general. Specific forms of governing equations and boundary
and initial conditions for various fluid dynamics problems will be discussed later in
appropriate chapters.

Part Two covers FDM, beginning with Chapter 3 for derivations of finite difference
equations. Simple methods are followed by general methods for higher order derivatives
and other special cases.

Finite difference schemes and solution methods for elliptic, parabolic, and hyper-
bolic equations, and the Burgers’ equation are discussed in Chapter 4. Most of the basic
finite difference strategies are covered through simple applications.

Chapter 5 presents finite difference solutions of incompressible flows. Artificial com-
pressibility methods (ACM), SIMPLE, PISO, MAC, vortex methods, and coordinate
transformations for arbitrary geometries are elaborated in this chapter.

In Chapter 6, various solution schemes for compressible flows are presented. Poten-
tial equations, Euler equations, and the Navier-Stokes system of equations are included.
Central schemes, first order and second order upwind schemes, the total variation dimin-
ishing (TVD) methods, preconditioning process for all speed flows, and the flowfield-
dependent variation (FDV) methods are discussed in this chapter.

Finite volume methods (FVM) using finite difference schemes are presented in
Chapter 7. Node-centered and cell-centered schemes are elaborated, and applications
using FDV methods are also included.

Part Three begins with Chapter 8, in which basic concepts for the finite element
theory are reviewed, including the definitions of errors as used in the finite element
analysis. Chapter 9 provides discussion of finite element interpolation functions.

Applications to linear and nonlinear problems are presented in Chapter 10 and
Chapter 11, respectively. Standard Galerkin methods (SGM), generalized Galerkin
methods (GGM), Taylor-Galerkin methods (TGM), and generalized Petrov-Galerkin
(GPG) methods are discussed in these chapters.

Finite element formulations for incompressible and compressible flows are treated in
Chapter 12 and Chapter 13, respectively. Although there are considerable differences
between FDM and FEM in dealing with incompressible and compresible flows, it is
shown that the new concept of flowfield-dependent variation (FDV) methods is capable
of relating both FDM and FEM closely together.

In Chapter 14, we discuss computational methods other than the Galerkin methods.
Spectral element methods (SEM), least squares methods (1LSM), and finite point meth-
ods (FPM, also known as meshless methods or element-free Galerkin), are presented
in this chapter. Chapter 15 discusses finite volume methods with finite elements used as
a basic structure.

Finally, the overall comparison between FDM and FEM is presented in Chapter 16,
wherein analogies and differences between the two methods are detailed. Furthermore,
a general formulation of CFD schemes by means of the flowfield-dependent variation
(FDV) algorithm is shown to lead to most all existing computational schemes in FDM
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and FEM as special cases. Brief descriptions of available methods other than FDM,
FEM, and FVM such as boundary element methods (BEM), particle-in-cell (PIC) meth-
ods, Monte Carlo methods (MCM) are also given in this chapter.

Part Four begins with structured grid generation in Chapter 17, followed by unstruc-
tured grid generation in Chapter 18. Subsequently, adaptive methods with structured
grids and unstructured grids are treated in Chapter 19. Various computing techniques,
including domain decomposition, multigrid methods, and parallel processing, are given
in Chapter 20.

Applications of numerical schemes suitable for various physical phenomena are
discussed in Part Five (Chapters 21 through 27). They include turbulence, chemically
reacting flows and combustion, acoustics, combined mode radiative heat transfer, mul-
tiphase flows, electromagnetic flows, and relativistic astrophysical flows.

1.2 ONE-DIMENSIONAL COMPUTATIONS BY FINITE DIFFERENCE METHODS

In this and the following sections of this chapter, the beginner is invited to examine
the simplest version of the introduction of FDM, FEM, FVM via FDM, and F'VM via
FEM, with hands-on exercise problems. Hopefully, this will be a sufficient motivation
to continue with the rest of this book.

In finite difference methods (FDM), derivatives in the governing equations are
written in finite difference forms. To illustrate, let us consider the second-order, one-
dimensional linear differential equation,

d’u

W—Z:O O<x<l1 (1.2.1a)
with the Dirichlet boundary conditions (values of the variable u specified at the bound-
aries),

{u:O atx=0

u=0 atx=1 (1.2.16)

for which the exact solution is u = x* — x.
It should be noted that a simple differential equation in one-dimensional space with
simple boundary conditions such as in this case possesses a smooth analytical solution.
Then, all numerical methods (FDM, FEM, and FVM) will lead to the exact solution
even with a coarse mesh. We shall examine that this is true for this example problem.
The finite difference equations for du/dx and d’u/dx? are written as (Figure 1.2.1)

du Uir) — Uy ;
~ 1.2.2
(_dx),» — forward difference ( a)
du Ui — Ui .
~ 1.2.2
(_dx )i ;- backward difference ( b)
(_ZZ), ~ —u”lz;;i_l central difference (1.2.2¢)

dzu_ d (du\ . 1[(du di\1 1 (ui+1—ui_ui—ui_1)
dx>  dx\dx)  Ax[\dx),, \dx/),] Ax Ax Ax

(1.2.3)



1.3 ONE-DIMENSIONAL COMPUTATIONS BY FINITE ELEMENT METHODS

lt” 1 u:
u
Ax
u,—u,_,
Ax
M U, — U,
2Ax
Ax Ax
i—1 i i+1 X

Figure 1.2.1 TFinite difference approximations.

Substitute (1.2.3) into (1.2.1a) and use three grid points to obtain

Uip1 — 2u; + Ui

o =2 (1.2.4)

With ;1 =0, u;1 = 0, as specified by the given boundary conditions, the solution at

x =1/2with Ax = 1/2 becomes u; = —1/4. This is the same as the exact solution given
by

= (x* -1 125

u; = (x —x)xz%——z (1.2.5)

In what follows, we shall demonstrate that the same exact solution is obtained, using
other methods: FEM and FVM.

1.3 ONE-DIMENSIONAL COMPUTATIONS BY FINITE ELEMENT METHODS

For illustration, let us consider a one-dimensional domain as depicted in Figure 1.3.1a.
Let the domain be divided into subdomains; say two local elements (e = 1, 2) in this
example as shown in Figure 1.3.1b,c. The end points of elements are called nodes.

Ty QO<x<1) T, «——h ——pl——h ——
x=0 x=1 1 2 3
(@) ()

@

- g o e, - (I)l(l) (I)z(l) (I)l (I)z(Z)
1 21 2 1 ><, N

] ] -

—

€2
x=0 x=h
0=180 0=0

(©) (d)

Figure 1.3.1 Finite element discretization for one-dimensional linear problem with two local el-
ements. (a) Given domain (£2) with boundaries (I'; (x = 0), T>(x = 1)). (b) Global nodes (a, B =1,
2, 3). (¢) Local elements (N, M = 1, 2). (d) Local trial functions.

o
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Assume that the variable #“)(x) is a linear function of x
u(x) = a + oux (1.3.1)

Write two equations from (1.3.1) for x = 0 (node 1) and for x = & (node 2) in terms
of the nodal values of variables, u(e) and ug ), solve for the constants oy and «a;, and
substitute them back into (1.3.1). These steps lead to

1©(x) = (1 _ 7;) (€} 4 (h) = o) (N=1,2) (1.3.2)

where the repeated index implies summing, @) represents the nodal value of u at the
local node N for the element(e), and CD( (x) are called the local domain (element)
trial functions (alternatively known as 1nterpolat10n functions, shape functions, or basis
functions),

¢ X ¢ X
' (x)=1- - ' (x) = ; (1.3.3a)
0< o) <1 (1.3.3b)

These functions are shown in Figure 1.3.1d, indicating that trial functions assume the
value of one at the node under consideration and zero at the other node, linearly varying
in between.

There are many different ways to formulate finite element equations (as detailed
in Part Three). One of the simplest approaches is known as the Galerkin method. The
basic idea is to construct an inner product of the residual R of the local form of the
governing equation (1.2.1a) with the test functions chosen the same as the trial functions
given by (1.3.3) and in (1.3.2):

(@R (x). RV) = / oY (x )(dzu@(x) - z)dx =0 (1.3.4)
0

This represents an orthogonal projection of the residual error onto the subspace spanned
by the test functions summed over the domain, which is then set equal to zero (implying
that errors are minimized), leading to the best numerical approximation of the solution
to the governing equation. Integrate (1.3.4) by parts to obtain

coydult " dO) (x) du)(x) h
(D(f)_ _/ N _f Zcb(f’) dx =
Maxl, )y dx dx dx 0 v (x)dx =0

or by using (1.3.2), we have

h h (¢ (¢) h
*(e) du [ d(DN (x) d(DM()C) (e) [ {e)
o — | — d — 20 dx=0 (NNM=1,2
N dx . |: A dx dx XUy ; v (X)dx ( )

(1.3.5)

This is known as the variational equation or weak form of the governing equa-
tion. Note that the second derivative in the given differential equation (1.3.1) has been
transformed into a first derivative in (1.3.5), thus referred to as “weakened.” This
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implies that, instead of solving the second order differential equation directly, we are to
solve the first order (weakened) integro-differential equation as given by (1.3.5), thus
leading to a weak solution, as opposed to a strong solution that represents the analyt-
ical solution of (1.2.1). The derivative du/dx in the first term is no longer the variable
within the domain, but it is the Neumann boundary condition (constant) to be specified
at x =0 or x = h if so required. Likewise, the test function is no longer the function
of x, thus given a special notation e ), called the Neumann boundary test function,
as opposed to the domain test function <I> (x) The Neumann boundary test function
assumes the value of 1 if the Neumann boundary condition is applied at node N, and 0
otherwise, similar to a Dirac delta function. This represents one of the limit values given
by (1.3.3b) at x = 0 or x = A, indicating that it is no longer the function of x within the
domain. Furthermore, appropriate direction cosines must be assigned, reduced from
two-dimensional configurations (Figure 8.2.3). Depending on the Neumann boun-
dary condition being applied on either the left-hand side (x = 0) or the right-hand side
(x = h), we obtain
du du

i = D oso
dx|,, dx >

du
= — (1.3.6a)
o= dX

du du
B 180° dx’ dx

To prove (1.3.6a), we must first refer to the 2-D geometry as shown in Figure 8.2.3, and
integration by parts is carried out as follows:

e d2M *(e du du f’)d
f/ ®SV)(x)WdXdy:>f¢$V)ad fCD( )d cos @ dI"' = @, d—cosﬂ

X

_ ()f)(e)@ x=h 0=0

N dx

in which only the integrated term is shown (omitting the differentiated term) and the di-

rection cosines for 1-D are applied at both ends of an element (8 = 0° for x =h, 6 = 180°

for x =0). This represents the simplification of 2-D geometry into a 1-D problem.
Using a compact notation, we rewrite (1.3.5) as

(1.3.6b)

x=0,0=180°

K9 u) =F9+ 6 (N m=12 (1.3.7)

This leads to a system of local algebraic finite element equations, consisting of the
following quantities [henceforth the functional representation (x) in the domain trial
and test functions will be omitted for simplicity unless confusion is likely to occur]:

Stiffness (Diffusion or Viscosity) Matrix (associated with the physics arising from the
second derivative term)

™ A dcb(e) dq)(e) dq)(e) dcb(e)
@) f —L 1 x f —2 dx
K©) :f dCD dCD Mo o dx dx o dx dx
0 dx dx d(b (e) d(p(‘)d f d(D(e) dcbg)d
[U Tdx  dx * o dx dx XJ

&S kY _1[1 ul]
Ky kY] o AL-11
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Source Vector

§ 1
FO = —fo 204 dx = —h[l]

Neumann Boundary Vector

cndul® s du
GV = 0= = &)~ cosd
N N dx 0 N dx

Contributions of local elements calculated above (e = 1, 2) can be assembled into
global nodes (a, 8 = 1,2, 3) simply by summing the adjacent elemental contributions
to the global node shared by both elements. In this example, global node 2 is shared by
local node 2 of element 1 and local node 1 of element 2.

(1) 9y
K, K, K Ky Ky 0 1 1 =1 0
1 2 2
Kg=| Ky Kn Ky|=|KY K¥+K7 K ~h —01 21 —11
Ko ko Kol [0 kg &Y -
(1.3.8)
(1)
F Fl 1
Fo=|F|= F(;)+F(f) =-h|2 (1.3.9)
I 2 1
3 FS
& *(1)
G Gy" o P
: . | du m | @ | du
Ge=| G| = Gg)+G(12) =| & E—cosﬂ: £ + @ —cos 0
G (2) e X
L 3 G, b, cI)(22)
0
d
=0 E”fcosa (1.3.10)
K

with &, = &, = &5 = 0 indicating that the Neumann boundary conditions are not to be
applied to any of the global nodes for the solution of (1.2.1a,b). This implies that, if the
Neumann boundary conditions are not applied, then the Neumann boundary vector is
zero even if the gradient du/dx is not zero. If the Neumann boundary conditions are to
be applied, then the boundary test function &Ef,) assumes the value of one and the du/dx
as given is simply imposed at the node under consideration. This is a part of the FEM
formulation that makes the process more complicated than in FDM, but it is a distinct
advantage when the Neumann boundary conditions are to be specified exactly.

Notice that the 2 x 2 local stiffness matrices for clement 1 and element 2 are over-
lapped (superimposed) at the global node 2 with the contributions algebraically summed
together,

Kn =K + KiY
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and similarly,
F= Fz(]) + Fl(z), (n = Gél) + G(12)

In view of the above, we obtain the final global algebraic equations in the form

T =1 07w 1
-1 2 —1||w|=-H|2 (1.3.11)
0 -1 1 Us 1

It will be shown in Chapter 8 that the global finite element equations (1.3.11) may
be obtained directly from the global form of (1.3.4),

! d*u
(@4, R) = f cba(— - Z)dx =0 (1.3.12)
0 d)(z
which will lead to (1.3.11), or
Kpug = Fo + Gy (0,3 =1.2,3) (1.3.13)
Expanding (1.3.11) at the global node 2 yields
—uy +2uy —uz = —2h* (h = Ax) (1.3.14)

or
tivg — 2u; 4 Ui
Ax?

This result is identical to the FDM formulation (1.2.4).

The Galerkin finite element method described here is called the standard Galerkin
method (SGM). It works well for linear differential equations, but is not adequate for
nonlinear problems in fluid mechanics. In this case, the test functions must be of the
form different from the trial functions. This will be one of the topics to be discussed in
Part Three.

—2 (1.3.15)

1.4 ONE-DIMENSIONAL COMPUTATIONS BY FINITE VOLUME METHODS

Finite volume methods (FVM} utilize the control volumes and control surfaces as de-
picted in Figure 1.4.1. The control volume for node i covers Ax/2 to the right and left
of node i with the control surface being located at i — 1/2 and i + 1/2. Finite volume
formulations can be obtained either by a finite difference basis or a finite element basis.
The results are identical for one-dimensional problems,

1.41 FVMVIAFDM

The basic idea for the formulation of FVM is similar to the finite element method
(1.3.12) with the test function being set equal to unity, as applied to the differential
equation (1.2.1a),

(Dq, R):(I,R)zj“l(l)(%—Z)dx:(), 0<x <l (1.4.1)

11
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CS! (Control Surface 1) ——\ ‘7 CS2 (Control Surface 2)
— X . X% —e
1-1 i-172 i i+ 12 i+ 1
@® @ ®
ﬁ Ax=h _Ai
2 ’ 2
cv, v, cv,

Figure 1.4.1 Finite volume approximations.

Integrating (1.4.1) yields

du|! !
e [ 2dx = 0 (1.4.22)
or
A
3 2t Y 28x=0 (1.4.2b)
G MY &G4

The integration limits of 0 and 1 are now replaced by discrete control surfaces (CS1
and CS2) between i — 1/2 and i 4 1/2, and the source term is to be evaluated for the
control volume (CV2), with reference to Figure 1.4.1. This implies that du/dx in (1.4.2a)
is to be evaluated at the control surfaces and that the diffusion flux du/dx is conserved
between i — 1 and i through the control surface i — 1/2 or CS1 and between ¢ and
i + 1 through the control surface i + 1/2 or CS2. This s accomplished when the control
surface equations are assembled ati — 1,i, and i + 1. This consetvation property is the
most significant aspect of the finite volume methods.

To complete the illustrative process, (1.4.2) can be written using finite difference
representation for the control surfaces between i — 1/2andi +1/2 as

Uiy — Ui U, — U1 —9Ax
Ax Ax
(CS2) (CS1)  (CV2) (1.4.3)

Dividing (1.4.3) by Ax, we obtain

Wiy) — 2 + Ui
Ax?

~2 (14.4)

which is identical to (1.2.4) for the finite difference method. Note that CV1and CV3
do not contribute to this process since nodes i — 1 and i + 1 are the boundaries whose
influence is contained in (1.4.3) through control surfaces CS1 and CS2.
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In order to demonstrate that F'VM can also be formulated by FEM, we evaluate du/dx
analytically from the trial functions (1.3.2), (Figure 1.3.1d), for the finite volume repre-
sentation of (1.4.2a),

u® = CD(,\e,)uSS) = (1 - ;—Z)uf) + %uge)

or

du® _ ul? —ul®
dx h

so that, from (1.3.6), we obtain

du) 1y (1) u(]) M
“ =2 —% coso =2 0 (1.4.5)
ax |eg h 6=180 h
du® LD 0 W20
L.. — 2 I cos o = 2——1(1) (146)
dx |cs h 8= h
Here, CS1 provides the direction cosine, cos8 = cos 180° = —1, whereas CS2 gives

cos 0 = cos 0° = 1, with reference to Figure 1.4.1.
Summing the fluxes through CS1 and CS2 at the control volume center (node 2) in
terms of the global nodes

Uz — Uy

h

du U, — u

S5 dx h

(1) +

(1) (1.4.7)

Note that, using (1.4.7), the finite volume representation (1.4.2) is given by

Uz — 2uy + uy

T =2 (1.4.8)

Once again, the result is the same as all other previous analyses.

1.5 NEUMANN BOUNDARY CONDITIONS

So far, we have dealt with only the Dirichlet boundary conditions for numerical exam-
ples. However, it has been seen that the Neumann boundary condition, du/dx, arises
automatically from the finite clement or finite volume formulations through integration
by parts. This information, if given as an input, may be implemented at the boundary
nodes under consideration. This is not the case for finite difference methods.

To demonstrate this point, let us return to the differential equation examined in
Section 1.2.

d’u

E—2=0 0<x <l (1.5.1)
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with the following boundary conditions:
u{0) =0 (Dirichlet) atx=0 (1.5.2)
?(1) =1 (Neumapn) atx=1 (1.5.3)
x

where it is reminded that the given differential equation (1.5.1) is described only
within the domain, 0 < x < 1, not including the boundaries, x = 0 and x = 1, which
are reserved for the specification of boundary conditions, either Dirichlet or Neumann.
Only when the governing equation is integrated are the boundary points (x =0, x = 1)
needed and used.

In the following subsections, implementations of the Neumann boundary conditions
will be demonstrated.

151 FDM

One way to implement the Neumann boundary condition of the type (1.5.3) is to install
a phantom (ghost, imaginary, fictitious) node 4 as shown in Figure 1.5.1. Writing the
finite difference equation and the Neumann boundary condition (slope) at the boundary
node 3, we have

Uy — 22Uz + iy = 2Ax? (154)
Uqg — U
_ 155
2Ax ( )

Substitute (1.5.5) into (1.5.4),

2Ax +ur —2us +up = 2Ax° (1.5.6)
Writing the finite difference equation at node 2, we have

wy — s + 1y = 2Ax° (1.5.7)
Solve (1.5.6) and (1.5.7) simultaneously to obtain

u, =—1/4, withuz; =0

which is the exact solution. This is because the approximation given by (1.5.5) is rea-
sonable with respect to the exact solution. The phantom node method may give a large

O O— —-——————— -0
1 2 3 4
w(0)=0 I I
du Phantom
”E (1) =1 node

Figure 1.5.1 Installation of phantom node for Neumann bound-
ary condition in finite difference method.
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error if this is not the case, or if the solution is unsymmetric with respect to the interior
and phantom node.

Instead of using a phantom node, we may utilize the higher order finite difference
equation at the Neumann boundary node. For example, we use the second order accurate
finite difference formula for du/dx at node 3 (see Chapter 3 for derivation),

d_u . 3us — duy + 1y
dx /4 B 2Ax

=1 (1.5.8)

Solve u3 from the above and substitute the result into (1.5.7) and obtain once again the
exact solution u, = —1/4, u; = 0.

152 FEM
It follows from (1.3.7c) that, at the Neumann boundary node 3,
sy du | fe
GO =89 win &0 =1 (1.5.9a)
dx |, -
Thus
du du
=(1)— =(1)—cos0° =1 1.5.9b
Gi=(Mg| = cos (1:5.99)

It follows from (1.3.11) that, having applied the Dirichlet boundary condition at node 1
(1¢(0) = 0), the global finite element equation becomes

En atiadh (15.10)

from which we obtain the exact solution u; = —1/4 and u3; = (. Notice that FEM ac-
commodates the Neumann boundary conditions exactly within the formulation itself,
not through those approximations required in FDM.

At this point it is important to realize that, if the Neumann boundary condition

du/dx = —1 is specified on the left end, then we have
du du
Gy = — = —cos180° = (-1}(-1) =1
1= Zp| = g oS80 = (D)

Thus, we have

R

This will once again give the exact solution, z#; = 0 and u» = —1/4.

1.53 FVMVIA FDM

The finite volume equation is given by Figure 1.4.1,

1

i+3 it+3
— / 2dx =10

1 o1
!75 2

di
dx

15
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or in terms of finite differences at node 2,

R R e CUPYNNE (1.5.11)
Ax Ax
at node 3,
d d A — A
dul _dul 58X g o 1T ,0E (1.5.12)
dxly dx|, "2 Ax 2

Combining (1.5.11) and (1.5.12), we obtain

2 w02 0
Eni Rl
Itis interesting to note that this is identical to the FEM formulation (1.5.10). Solving, we

have the exact solution (u> = —1/4, u3 = 0). In this manner, FVM via FDM is capable
of implementing the Neumann boundary conditions exactly, unlike FDM.

1.54 FVMVIA FEM

We return to (1.4.2a),
dul’ !
—| = 2dx =0 1.5.13
dx |y Lﬂ * ( )

where at node 2 we have, from (1.4.5) and (1.4.6),

1

du ! du du
Sl 2dx = 2 cos 180° + — cos 0° — 24
dx ) L X dx CcOs + dx cOSs
or
oMy BBy —2m=0 (15.14)
2 2
at node 3,
dul _dul 2’1 -0
dxlpyi  dxls 2
or
”3;”2(-1)+1—h:0 (1.5.15)

Combining (1.5.14) and (1.5.15), we have

501

This gives the exact solution, u» = —1/4 and u3 = 0. Once again in FVM via FEM the
treatment of the Neumann boundary condition is precise.
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1.6 EXAMPLE PROBLEMS

Here we provide additional examples, illustrating further applications of boundary con-
ditions and including treatment of source terms.

1.6.1 DIRICHLET BOUNDARY CONDITIONS

Consider the three-element system as shown in Figure 1.6.1a to solve the differential
equation with the source term f{x),
d*u
E—Zu: flx) 0<x<1 (1.6.1)
f(x) =4x* —2x — 4

subject to the Dirichlet boundary conditions:

u=10_0 atx =0
u=-1 atx=1

whose exact solution is given by 4 = —2x2 + x.

FDM
Write FDE at nodes 2 and 3.
Node 2

Uz — 2uy + uy
- —Zu =
Ax? 2=/

ts — 2ur + 0 1\’ 1 38
—_— 2 = 4 - - 2 = - 4 = —
(137 “ (3) (3)
-3
9(L£3 — 2u2) — 2u2 = TS

Figure 1.6.1 Example problem, Dirichlet and 9 =180° 0=0°

Neumann boundary conditions. (a) Three ele- o X
ments, four nodes for FDM and FEM. |

(b) Direction cosines at control surfaces as a

result of integration by parts for FVM. 4 4

<

)
X
o
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Node 3

_ 2\ 2 o) _
ﬂi_%ﬁiﬂ%_mh=4(_ Py a2
(1/3)? 3 3 9

-32
9(—1 - 2us + uz) — 22Uz = T

Combining, we have
=20 9 U _ - ‘3§8‘
9 20| |us| 2
up | 0111
uz | | —0.222
These values represent the exact solution.

FEM
The local Galerkin finite element analog is given by

[h CDSS)(@ —2u — f(x))dx =0
0

dx?

where the source term f(x) may be linearly approximated in the form

F(x) = @) 1y

Integrating by part, the local algebraic equations are written as
Kbl = £+ 68

where

h (e) ()
(&) _ ddy ddy, () x(e) St -1 % 2 1
KNM_fO ( dx dx 20N Py dx_h 1 1T o2
) h h
R =y = [ opelac=-2[1 J]. ath=[g
0 611 2 0

The local finite element equations are assembled into the global form,

KQBLLB = ch -+ Ga

or

a b 0 07w 201 0 07T f 0
boeb Oflw|_ k141 0f|A] dufo
0O b ¢ b u3_60141f3dx()
0 0 b a iUy L0 0 1 2 LA 0

2+ £ ] 110

:_@ fi+4f+ f3 :ﬁ 220

6| L+4f+ 1 54 | 184

B+2fH0 68
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with

a = (1/h) + (2h/3) =29/9
b= —(1/h) + (2h/6) = —26/9,

c=58/9 =7
-4
fi 38
U I
B f3 _ %
f4 -2
The first and last equations are replaced by the Dirichlet boundary conditions u(0) = 0
and u(1) = —1, and the rest of the equations are modified as follows:
u =0
cir +bhbus =6
bir +cus +b(—1)=F
Uq = -1

Rewriting the above in matrix form,

1 0 0 0w 0 0
0 ¢ b O le_Fz 0
0 b c Oflws| | B | | —=b
00 0 1] u 1 0

The solution of the above equations again results in the exact solution,

78] 0

w | | 0111
us | | =0.222
Uy -1

Notice that the first and last equations may be deleted and only the second and third
equations solved to once again arrive at the exact solution.

FVM via FDM

Finite volume methods require the use of control volumes and control surfaces
centered around a node. The governing differential equation is integrated similarly as
in finite element formulations, but with the test functions set equal to unity at a node
under consideration and zero elsewhere. At node 2 for control volume 1, we have

fmi:zz(n[@ ~2u - f(x)}dx ~0

—14 dx?
2

11 Ax

4 2 2} uy —u u — U
—f 2udx = f(x)dx, S 2A N HAx
L ! X

1
2
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Similarly, at node 3 for control volume 2

g — U3 Uy —
— —2unAx = f3Ax
Ax Ax ’ /s

These equations are identical to FDM, giving the exact solution.

FVYM via FEM

;—[012udx:[01 f(x)dx

For control volume 1 with CS1 and CS2 involved, we have

du
dx

du U —
&1 ax h
uz —2up + Uy

h

i ; ac: {cos0”) =

Uz — Uz —

U Ur
LD+ ()

(cos 180°) +

— 2wh = fh

or

Similarly, for control volume 2 with CS1 and CS2 involved,

Us — 22Uz + un

Ax? — =1

1t is seen that the result is identical to FVM via FDM.

1.6.2 NEUMANN BOUNDARY CONDITIONS

Here we demonstrate methods for treating the Neumann boundary conditions depend-
ing on the side of the boundary to which they are applied.

Neumann Boundary Condition Specified at Right End Node. Given the same differential
equation as in (1.6.1), Figure 1.6.1b:

dZ
%%—2u:f(x) O<x<1

f(x)=4x*—2x—4

subject to boundary conditions:

u=>0 atx =0
du

— =-3 atx=1
e at x

which has the exact solution:

U= -2x*+x
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FDM
From the given Neumann boundary conditions without using the phantom node, we
have

Uqg — U3
= -3, s =tz — 1

(13
with FDM equations at nodes 2 and 3 given by

uz — 2u + wy

T
R
us — 2us + up ¢
(1/3)? Tl
Thus we obtain
38
Nuz — 2up +0) = 2up = -5
32
Nuz — 1 — 2us + uy) — 2uz = -

or

2 ) E-E -]
[Zi] B [_—06.05118]

g = —1—-051=-1.51, 50% error
In order to improve the solution, we may use a three-element system with the phantom
node 5,
du
dax
915 — 2014 + Yus = f4
Oy — 2014 + 9(”3 — 2) = -2

3BT 2
=-3= , Us = Uz —
2AXx 5 3

x=1

20 9 0 [w — 3%
9 20 9 ||ws]|=]|-%
0 18 =20 | | uy 16

This gives the exact solution
u =0, uy = 1/9, us = —2/9, g = —1

Another method is to use the second order accurate formula for du/dx [(3.2.5) or
(3.2.20) in Chapter 3] written at node 4,

3u4 - 4M3 -+ Uy _
2Ax N

-3

21
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or with d’u/dx? written at node 4 as

(du) (du)
dx J 4 dx -1 2 3 Uy — U3
Ax/2 T Ax Ax

and combining with FDM equations written at nodes 2 and 3, we again obtain the exact
solution. The reader may verify that the solution deteriorates significantly if only two
elements are used. This is because the implementation of Neumann boundary con-
ditions is difficult in FDM, contrary to FEM, as shown in the next example.

FEM
The Neumann boundary conditions at x = 1 are written as

h
() « du 2) du
Gy = dy— G =) —] =-3
N Ndx 0 2 ( )(dx)z

with &y = 0 everywhere except at the Neumann boundary node. Assembly of all contri-
butions of elements for the global stiffness matrix and the load vector for a two-element
system results in the following:

[c b} [uz] - [fl Y f3:| - : [_22]
b a|lu; 6 L+2A 121 -8
with

a=(1/h)+(2h3)=2+13=1/3
b=—(1/h)+ (hf3)=-2+1/6=—11/6

c=14/3
so that the final algebraic equations together with the Neumann boundary vector are
written as

T ] [m}:i[n}r[o]

_—16—1 % i Uz 12 8 -3
or

] 0]
_l/l3 B - 1_
Once again, the exact solution has been obtained with only two clements.

FVM via FEM and FDM (two elements)
For node 3 via FEM, we have
du du h

h
it Sy = e
d|y " x|y 72 133

Uz — Uy h h
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Similarly, for node 3 via FDM, we obtain

du |’ h h
2 2w = fe
dxly 2=

Uz — Uz h h
3 —Duae = =2 =
ST "33 (2)

Thus, for both methods, we have

ERE

_uz _ 1/9 '
lus | | —2/9

It is seen that both methods give the same results.

or

Neumann Boundary Condition Specified at Left End Node. To demonstrate treatment of the
Neumann boundary condition if given at the left end node, we consider the following

data:

Z—z =1 atx=90
u=-1 atx=1
FDM
(1) Phantom node method (phantom node created, corresponding to ug)
Uy — Uy
2Ax

(2) Second order accurate formula for du/dx at node 1
—3uy + 4wy — us

2Ax
(3) d?u/dx* written at node 1 as

(@), (&)
dx / dx ]y —-2(1 ug—ul)

% ~ Ax Ax

=1

With either one of these three methods, we obtain the exact solution. The reader should
carry out the calculations for verification of the above results.

FEM

a b 07w F p, 44

b ¢ bllw|=|Fh|+ d)(c) =0
O b a (/%] F3 O
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with
x du du
— =(1)— 180%) = (1)(1)(—1
byl =g cos(180) = (1)
[ 3222 —-2.888 0 U1 1 -1
—2.888 6.444 —1.833 u | = 118331+ 0
| 0 —1.833 3222 U3 0.666 0
_ul 0 '
Uy | = 0.111 Tt
| u3 —0.222 |

Note that, although %(0) = 1 at the left end node, we obtain G; = —1 because of the
direction cosine, cos 180° = —1. The reader is reminded that it is important to recognize
the role of direction cosines as depicted in Figure 8.2.3.

FUM via FEM
du du h h
Node 1: & L& _p, 2 =
ode Tl F x|, Tz =3
d d
Node2: & + % _2un= ph
dx 1% dx 2%

Specifying the Neumann boundary data with correct direction cosine (—1), we obtain

Node 1: (1)(—-1) + = ;ul (1) - 2”1(2) - _4(2)

Uz — Uy
h

22— U
-1
(1) +

i

from which, again, we obtain the same results.

Node 2: (1) = 2ush = —4h

FVM via FDM
Node 1: v _mow 1
el: —| = —
dx |, h
du 23 Us — Uy Uy — I
Node2: —| = —
O x|, T Tk 2

The formulation and results here are the same as in FVM via FEM.

1.7 SUMMARY

The purpose of this chapter was to acquaint the reader with all available computa-
tional methods through very simple one-dimensional linear second order differential
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equations. For one-dimensional problems presented in this chapter, it is seen that all
methods, finite differences, finite elements, and finite volumes provide the final forms of
algebraic equations identical to each other, giving the same results for Dirichlet prob-
lems. Neumann boundary conditions are approximated in FDM, but they are imple-
mented exactly in FEM and FVM. They “naturally” arise in due course of the formula-
tion. For this reason, Neumann boundary condition is often called “natural” boundary
condition. This is not the case for FDM, although exact solutions were obtained for
simple examples.

The formulation of FDM equations in one dimension is simple, whercas the concept
of algebra involved in FEM is complex. This complicated algebra, however, will be quite
useful in multidimensional, arbitrary geometries, and boundary conditions.

Although we have shown only one-dimensional problems in this chapter, we may
be able to predict what will happen in multidimensional problems. Mesh configurations
for FDM must be structured for multidimensional problems as shown in Figure 1.7.1a.
Inclined or curved mesh lines can be transformed into orthogonal coordinates so that
finite difference equations can be written in orthogonal directions for 2-D or 3-D. This
can not be done for FDM if the mesh configuration is unstructured as in Figure 1.7.1b.
In this case, FEM and FVM can still be accommodated to arbitrary geometries and
arbitrary mesh configurations (triangular or quadrilateral elements for 2-D, tetrahedral
or hexahedral elements for 3-D).

& &

Transformed to orthogonal
Cartesian coordinates

(@)
Quadrilateral elements Triangular elements
(b}

Figure 1.7.1 Geometric mesh configurations in two dimensions.
(a) Structured grids for finite difference, mesh lines intersecting
two ways (2-D) and three ways (3-D). They must be transformed
into orthogonal cartesian coordinates. (b) Unstructured grids for
finite elements or finite volumes. No coordinate transformations
are required.

25



26

INTRODUCTION

There are differences and analogies (similarities) among all methods, irrespective
of geometric dimensions. Some of the relatively well known properties are listed below.

FDM

1. Easy to formulate.

2. For multidimensional problems, meshes must be structured in either two or
three dimensions. Curved meshes must be transformed into orthogonal cartesian
coordinates so that finite difference equations can be written on structured
cartesian meshes.

3. Neumann boundary conditions can only be approximated, not exactly enforced.

FEM

1. Underlying principles and formulations require a mathematical rigor.
Complex geometries and unstructured meshes are easily accommodated, no
coordinate transformations needed.

3. Neumann boundary conditions are enforced exactly.

FVM

1. Formulations can be based on either FDM or FEM.
Surface integrals of normal fluxes guarantee the conservation properties through-
out the domain.

3. Complex geometries and unstructured meshes are easily accommodated, no
coordinate transformations needed.

The above assessments are by no means complete; we shall examine more thor-
oughly all the details of each method in the remainder of this book. Advantages and
disadvantages are to be evaluated on a much broader basis.

Many of the problems in fluids and heat transfer are dominated by convection,
shock wave discontinuities, turbulence microscales, incompressibility, compressibility,
viscosity, etc. Thus the simple procedures shown in this chapter must be modified in
accordance with physical situations. These challenges are ahead of us. Our goal is to
explore all major computational methods using FDM, FEM, and FVM in the hope
that in the end the reader will have developed an insight and ability to choose the most
accurate, efficient, and suitable approaches to CFD in order to solve his or her problems
of interest.
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CHAPTER TWO

Governing Equations

2.1 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDEs) in general, or the governing equations in fluid
dynamics in particular, are classified into three categories: (1) elliptic, (2) parabolic,
and (3) hyperbolic. The physical situations these types of equations represent can be
illustrated by the flow velocity relative to the speed of sound as shown in Figure 2.1.1.
Consider that the flow velocity  is the velocity of a body moving in the quiescent fluid.
The movement of this body disturbs the fluid particles ahead of the body, setting off the
propagation velocity equal to the speed of sound a. The ratio of these two competing
speeds is defined as Mach number

P
a

For subsonic speed, M < 1, as time 7 increases, the body moves a distance, u, which
is always shorter than the distance at of the sound wave (Figure 2.1.1a). The sound wave
reaches the observer, prior to the arrival of the body, thus warning the observer that
an object is approaching. The zones outside and inside of the circles are known as the
zone of silence and zone of action, respectively.

If, on the other hand, the body travels at the speed of sound, M = 1, then the observer
does not hear the body approaching him prior to the arrival of the body, as these two
actions are simultaneous (Figure 2.1.1b). All circles representing the distance traveled
by the sound wave are tangent to the vertical line at the position of the observer. For
supersonic speed, M > 1, the velocity of the body is faster than the speed of sound
(Figure 2.1.1c). The line tangent to the circles of the speed of sound, known as a Mach
wave, forms the boundary between the zones of silence (outside) and action (inside).
Only after the body has passed by does the observer become aware of it.

The governing equations for subsonic flow, transonic flow, and supersonic flow
are classified as elliptic, parabolic, and hyperbolic, respectively. We shall elaborate on
these equations below. Most of the governing equations in fluid dynamics are second
order partial differential equations. For generality, let us consider the partial differential
equation of the form [Sneddon, 1957] in a two-dimensional domain

3u u Fu  du

u
A— B~ Y P L E L FutG=0 2.1.1
ox2  Caxay Cap T Uax Ty, T @LD
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Current ut= at ¢
position — o,

Current
position

ut
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{©)

Figure 2.1.1 Subsonic, sonic, and supersonic flows. (a) Subsonic (& <a, M < 1). (b) Sonic
(u=a. M=1).(c) Supersonic (u>a. M= 1).

where the coefficients A, B, C, D, E, and F are constants or may be functions of both
independent and/or dependent variables. To assure the continuity of the first derivative
of u, u, = du/dx and u, = du/3dy, we write

GIT du 9%u 8u
diy = —d ‘dy = —dx + ——d 2.12
“ dx o ay Y= e X axay Y ( 2)
ou, ) 32 a2
duy = e + Mgy = T8 g 1 20y (2.1.2b)
T Ax dy dxdy ay?

Here u forms a solution surface above or below the x — y plane and the slope dy/dx
representing the solution surface is defined as the characteristic curve.
Equations (2.1.1), (2.1.2a), and (2.1.2b) can be combined to form a matrix equation

A B C Uyy H
dx dy 0O U | = | duy (2.1.3)
0 dx dy Uyy du,
where
3 0
H=— D—"-‘+E—”+Fu+G) (2.1.4)
dx ay

Since it is possible to have discontinuities in the second order derivatives of the
dependent variable along the characteristics, these derivatives are indeterminate. This
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Figure 2.1.2 Propagation of disturbance and

characteristics. Zone of

Influence

Zone of . A
Dependence Signal point
disturbance at A

happens when the determinant of the coefficient matrix in (2.1.3) is equal to zero.

A B C
dx dy 0]=0 (2.1.5)
0 dx dy
which yields
dy : dy
Al —) - B| = C=0 2.1.6
(dx) (a’x) + ( )

Solving this quadratic equation yields the equation of the characteristics in physical
space,

dy Bx~B2—-4AC

dx 2A
Depending on the value of B> — 4 AC, characteristic curves can be real or imaginary,
For problems in which real characteristics exist, a disturbance propagates only over a
finite region (Figure 2.1.2). The downstream region affected by this disturbance at point
A is called the zone of influence. A signal at point A will be felt only if it originates from
a finite region called the zone of dependence of point A.

The second order PDE is classified according to the sign of the expression
(B> — 4AC).

(a) Elliptic if B> —4AC <0

In this case, the characteristics do not exist.
(b) Parabolic if B> —4AC =0

In this case, one set of characteristics exists.
(c) Hyperbolic if B> -~ 4AC > 0

In this case, two sets of characteristics exist.

(2.1.7)

Note that (2.1.1) resembles the general expression of a conic section,
AX? + BXY+CY?+ DX+ EY+ F=0 (2.1.8)
in which one can identify the following geometrical properties:

B> —4AC <0 ellipse
B —4AC =0 parabola
B> —4AC >0 hyperbola
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This is the origin of terms used for classification of partial differential equations.

Examples

(a) Elliptic equation
Pu du
o T gy
A=1, B=0, (C=1
B> —4AC = -4 <0

=0 (2.1.9)

(b) Parabolic equation

du 3’u

= %52 =0 (@>0) (2.1.10)
A=—a, B=0, C=0

B> —4AC =0

(c) Hyperbolic equation

1-D First Order Wave Equation
ou au

o Tag =0 (a>0) (2.1.11)

1-D Second Order Wave Equation
Differentiating (2.1.11) with respect to x and ¢,

8%u 3%u
atox -+ aa—xz =0 (21123)
9%u 3’u
= amarax = (2.1.12b)

Combining (2.1.12a) and (2.1.12b) yields
Ru 0%

3 ' =0 (2.1.13)

where
A=1, B=0, C=-qg’
B’ —4AC =44’ > 0
(d) Tricomi equation
8%u 9%u
PP *‘5}5 =0 (2.1.14)
A=y, B=0 C=1
B* —4AC = -4y

elliptic v>0

y

parabolic y=0
hyperbolic y <0
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(e) 2-D small disturbance potential equation

aZ(b 82
2

A=1-M, B=0, C=1
B’ —4AC = —4(1 — M?)
elliptic M<1

parabolic M=1
hyperbolic M > 1

In CFD applications, computational schemes and specification of boundary condi-
tions depend on the types of PDEs. In many cases, the governing equations in fluids and
heat transfer are of mixed types. For this reason, selection of computational schemes
and methods to apply boundary conditions are important subjects in CFDD. We shall
examine them in detail for the remainder of this book.

2.2 NAVIER-STOKES SYSTEM OF EQUATIONS

Physics of fluids and heat transfer as a part of continuum mechanics has now been
well established. The nonconservation form of the governing equations in fluids can be
derived from the first law of thermodynamics, written as [ Truesdell and Toupin, 1960;
Chung, 1996]

DK DU

— +———=M 221

D "D +0 (2.2.1)
where K, U, M, and Q denote the kinetic energy, internal energy, mechanical power,
and heat energy, respectively,

1
K= f —pV,‘ngQ (222)
Q2
U= f pedQ (2.2.3)
Q
M= / pF,'V,‘dQ + f O'ijVjﬂ,‘d r (224)
Q r
Q= f prdQ2 — f qgindT (2.2.5)
Q r
with
e=c, 7L (2.2.6a)
p
o = —pdi; + (2.2.6b)
2
Tip = W(Vij + Vi) — gP«Vk.kaij (2.2.6¢)

gi = —kT,; (2.2.6d)
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where the repeated indices imply summing and the comma denotes partial derivatives
with respect to the independent variables x;, Q represents the domain of the flowfield
with n; being the components of a vector normal to the boundary surface I', with p =
density per unit mass, v; = components of the velocity vector, € = internal energy per
unit mass, F; =components of body force vector, ¢, =specific heat at constant pressure,
g;; = total stress tensor, 7;; = viscous stress tensor, p = coefficient of dynamic viscosity,
p = pressure, g; = heat flux, 7' = temperature, k = coefficient of thermal conductivity,
and r = heat supply per unit mass. Note that §;; denotes the Kronecker delta with §;; = 1
fori = jand&; =0fori # j.

The dynamic viscosity and thermal conductivity coefficients are functions of tem-
perature as given by Sutherland’s law,

Cl T3/2

Il e (2.2.7)
C T3/2

k= T3+ c. (2.2.8)

with (), C;, G5, and C4 being the constants for a given gas. For air at moderate
temperatures, we may use C; = 1.458 x 107 kg/(m s K1/?), ; =110.4 K, C;3 =2.495 x
103 kg m/(s* K3/?), and Cy =194 K.

Substituting (2.2.2) through (2.2.5) into (2.2.1) and using the Green-Gauss theorem,
we obtain the governing equations of continuity, momentum, and energy,

Continuity

d
£ +(pvi)i =0 (2.2.9a)

Momentum
ov;

P +pviivi+p;—Tjii—pF;=0 (2.2.9b)

Energy

J€

ar

with the equation of state

po-+PEN + PV —TyVii+ g —pr =0 (2.2.9¢)

p =pRT (2.2.10)

where R is the specific gas constant. Note that equations (2.2.9a) through (2.2.9¢c) are
known as the nonconservation form of the Navier-Stokes system of equations for com-
pressible viscous flows.

The above equations may be recast in the so-called conservation form of the Navier-
Stokes system of equations,

U N aF, N 3G;
ar - dx;  dax;

B (2.2.11)
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where U, F;, G;, and B are the conservation flow variables, convection flux variables,
diffusion flux variables, and source terms, respectively

P pvi 0 0
U= pv; |, F; = pVviv;+ p6ij ) G, = —Tij ’ B= ij
pE pEv; + pv; —Tijvji +¢q; pFjv;

with £ being the total (stagnation) energy,

1
E=c¢+ 5ViVi (2.2.12a)
which is related by the pressure and temperature as
1
p=(x-1Dp (E - EVjVj) (2.2.12b)
1 1
T= o E - FViVi (2.2.12¢)

with ¢, being the specific heat at constant volume. The Navier-Stokes system of equations
is simplified to the Euler equations if the diffusion flux variables G, are neglected.

It should be noted that, upon differentiation as implied in (2.2.11), we recover the
nonconservation form of the Navier-Stokes system of equations given by (2.2.9).

On the other hand, integrating (2.2.11) spatially over the volume of the domain,

aU  oF; 4G,
oy 0t —BldOo =0 2.2.13
_/5; ( at + ax; + ax; ) ( )
we obtain another form of governing equations,
oU
f (— — B)dﬂ + f(F, + G)nidl' =0 (2.2.14)
Q\ 0t r

Note that the surface integral in (2.2.14) represents the convection and diffusion fluxes
through the control surfaces, which are in balance with 9U/dr and B inside the con-
trol volume. The surface integral in (2.2.14) has two important roles. First, it lays the
foundation for the finite volume methods (FVM). Second, it provides appropriate nu-
merical treatments for high gradient flows or discontinuities such as shock waves. Con-
servation properties across the discrete element boundary surfaces are satisfied if the
surface integral components in (2.2.14) are properly implemented in the numerical
solution.

Various types of fluid flows emerge from the Navier-Stokes system of equations in
nonconservation and conservation forms. In general, computational schemes are dic-
tated from the physics of flows characterized by special forms of the governing equations.

We have written the governing equations in fluid dynamics in three different ways.
Equations (2.2.9a) through (2.2.9c) derived from the First Law of Thermody-
namics (FLT) are the nonconservation form of the Navier-Stokes system of equa-
tions in terms of the primitive variables p, v;, p, T, whereas the Conservation form
of Navier-Stokes system (CNS) of (2.2.11} are written in terms of the conservation
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variables U, F;, and G;. In contrast, the Control Volume-Surface (CVS) equations
(2.2.14) are expressed in volume and surface integral forms, but still in terms of the
conservation variables U, F;, and G;. All of these three different forms of the governing
equations represent certain types of numerical schemes to be developed, each playing
special roles in CFD,

The FLT equations are convenient when the primitive variables p, v;, p, T are to be
solved directly, whereas this is not possible if CNS or CVS equations are used. It is seen
that the conservation variables must be solved first with primitive variables extracted
indirectly. Despite this inconvenience, the CNS or CVS equations are preferred in many
CED problems. For example, when the solution of density p is discontinuous, such as in
shock waves, the solution through FLT is difficult. On the other hand, the mass flow pv;
is a smooth function and so are all other conservation variables, whereby the solution of
CNS or CVS equations makes it possible to obtain discontinuous solution of primitive
variables (indirectly). So, the conclusion here is that we can use FLT if the solution
does not contain discontinuities such as in incompressible flows (no shock waves). This
is known as the pressure-based formulation. Otherwise, CNS or CVS equations can
be chosen, in which satisfactory results are assured in general, when the solution may
contain discontinuities such as in compressible flows. This is known as the density-based
formulation.

The Navier-Stokes system of equations as given by (2.2.11) may be simplified by
disregarding one or more equations and/or some of the terms of each equation. For
example, the momentum equations (2.2.9b) alone are often called the Navier-Stokes
equations, thus distinguished from the Navier-Stokes system of equations which includes
all equations (2.2.9a) through (2.2.9¢). If all viscous terms are eliminated from the
Navier-Stokes system of equations, then the resulting equations are known as Euler
equations. The momentum equations without the pressure gradients are called the
Burgers’ equation. The Burgers’ equation can be inviscid linear (no viscosity terms
with convection terms being linearized), inviscid nonlinear, linear viscous, and nonlinear
viscous. Simpler forms of these equations will be treated in Chapter 4. The governing
equations for incompressible and compressible flows are discussed in Chapters 5 and 6
for FDM and Chapters 12 and 13 for FEM. More complicated governing equations are
the subjects of Chapters 21 through 27.

The Navier-Stokes system of equations can be modified into various different forms,
corresponding to particular physical phenomena, with the following subject areas in-
cluded: compressible viscous flow (Navier-Stokes system of equations), compressible
inviscid flow (diffusion terms are neglected), incompressible viscous flow (temporal
and spatial variations of density are neglected), incompressible inviscid flow (both dif-
fusion and density variations are neglected), vortex flow in terms of vorticity and stream
function, compressible inviscid flow in terms of velocity potential function, turbulence,
chemically reacting flows and combustion, acoustics, combined mode radiative heat
transfer, and two-phase flows, as summarized in Table 2.2.1.

The governing equations in fluids and heat transfer in general are of mixed types:
elliptic, parabolic, and hyperbolic partial differential equations. The presence or absence
of each of the terms in these equations will determine their specific classifications. It will
be shown throughout the book that numerical schemes depend on the types of partial
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Table 2.2.1 Various types of flows
Navter-Stokes System of Equations
Reactive Flow Rotational Inviscid \llisgoqz— Viscous
Acoustics | mvisci
Readiative Heat Transfer nteractions
Multiphase Flow |
Electromagnetic Flow l
Vorticity Thin Shear Parabolized Boundary
Transport Layer Nawier-Stokes Layer
| Approximations
Crocco
Equation
| Incompressible | Compressible
Stream [
Function
Biharmonic , Incompressible | | Laminar Flows || Compressible
Equation Euler Equation P P
Full Potential Burgers’ Turbulent
Equation Equation Flows
Small Stokes Equation
Perturbations Creeping Flow

differential equations. In general, physical phenomena dictate the types of equations to
be used, which are then accommodated by appropriate numerical schemes for solutions
of the equations.

The Navier-Stokes system of equations presented above is cast in the Eulerian co-
ordinates in which the current flowfield is fixed at the reference coordinates. In dealing
with multiphase flows, however, it is convenient to work with the Lagrangian coordi-
nates in which displacements of fluid or solid particles are tracked relative to the initial
reference coordinates. Both Eulerian and Lagrangian coordinates may be coupled in
dealing with certain physical phenomena. These and other topics of coordinate systems
are discussed in Section 16.4 and Chapter 25. Detailed mathematics of Eulerian and
Lagrangian coordinates are given in Chung [1996].

For flows coupled with magnetic and electric forces, it is necessary to solve the
Maxwell’s equations together with the modified Navier-Stokes system of equations.
Applications of these equations to coronal mass ejection and semiconductor plasma
processing are presented in Chapter 26.

The Navier-Stokes system of equations discussed in this section is based on the
macroscopic nonrelativistic continuum view. In dealing with extremely high velocities
such as occur in supernova explosions, the cosmic expansion, and cosmic singularity,
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however, the relativity principles based on the microscopic kinetic theory must be used.
The governing equations for the relativistic astrophysical flows and their numerical
solutions are discussed in Chapter 27.

2.3 BOUNDARY CONDITIONS

In Section 1.2 we dealt with boundary conditions for the second order differential
equation: Dirichlet boundary conditions (values of variables specified at boundaries)
and Neumann boundary conditions (derivatives of variables specified at boundaries).

In general, the boundary conditions are identified by constructing the inner product
of the residual of the given differential equation with an arbitrary function. For exam-
ple, consider the biharmonic fourth order partial differential equation of the stream
function s

vV — F =0 (2.3.1)

which 1s obtained from the curl of the vector form of the two-dimensional momentum
equation (2.2.9b), with v = w/p and f being the nonlinear function of velocity gradients.
We shall demonstrate which boundary conditions are required for this equation. To
determine them, we construct an inner product of (2.3.1) with an arbitrary function ¢

[Chung, 1996]:

(.09 = £) = [ 60y = N2 =0 (232)
Integrate (2.3.2) by parts four times, successively,

fd)VllJ,iij”jdr *f djvis;;;dQ —/ bfd2 =0

r Q Q
fd)vlb,iij”jdr_/‘d)‘jvd"_ii”jdr+f dlfjvlli.udﬂ—f fd2 =0
r r Q Q

fd)vlb,uj"jdr—/Q;‘W.n”jdr+f¢,jfv¢,midf —f ¢, vl dQ2
T r r Q

—L¢m9=o

Finally,
fr(dmli.ﬁjnj — byl iing + b vl — & v )dl

+f b i v d2 — f bfd2 =10 (2.3.3)
Q Q
where the boundary conditions consist of two Neumann and two Dirichlet conditions:

Neumann Boundary Conditions

U;;jn; normal stress gradient

$in;  normal velocity gradient (23.4a)
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Dirichlet Boundary Conditions

G ;n;  normal velocity

U stream function (2.3.45)

It is seen that, for the 2mth order differential equation, the Neumann boundary con-
ditions are of the order 2m — 1,2m — 2, ...m and the Dirichlet boundary conditions
are of the order m—1,m—2,...0. These boundary conditions are to be prescribed
on the boundary surfaces. Similarly, for the second order equation (V2 = 0), there is
one Neumann boundary condition (U,; ;) and one Dirichlet boundary condition ().
It was seen in Chapter 1 that the implementation of the Neumann boundary conditions
“naturally” arises in the formulation process of FEM, whereas in FDM they must be
carried out “manually” with appropriate forms of the difference equations.

Often, mixed Dirichlet and Neumann conditions (called Cauchy or Robin condi-
tions) are used. For example, for the second order differential equation such as in
combined conductive and convective heat transfer boundary conditions, we may write

a1

al +p— =1y (2.3.5)
on

with

a1 aT oT ol

n (n ) i o n + 3y n; + an3 ( )

B=0 Dirichlet

o=20 Neumann

a#0,B8#£0 Cauchy/Robin

Note that the notation 37 /d# 1s misleading since # in this derivative is neither the unit
normal vector n, nor its components #;. However, this unfortunate notation has been
generally accepted in the literature.

For time dependent problems, we must provide initial conditions as well as boundary
conditions. Let us consider the case of hyperbolic, parabolic, and elliptic equations as
shown in Figure 2.3.1.

(1) Hyperbolic equations associated with Cauchy conditions in an open region
{(Figure 2.3.1a).

Second Order Equation

9%u 8’u
ﬁ—azgﬁ—_—ﬂ 0<x<l1 (2.3.7)

L . i 0
Two initial conditions given {u(x, 0) and é%(x, 0)

0
Two boundary conditions given {u(O, 1) or %(O, t)
X

{u(l,t) or g—Z(l,t)
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(a)
P,
X o o’ P> y
: open
u(O,t)or u(l,t)or
du i ou
%o Ry
ax( ’t) ax( ’t)
X X
u@mm%@mﬂ
(b) ()

Figure 2.3.1 Initial and boundary conditions for hyperbolic, parabolic, and elliptic equations.
(a) Hyperbolic equations {two sets of characteristics), Cauchy conditions in open region for second
order equation. (b) Parabolic equations (one set of characteristics), Dirichlet or Neumann boundary
conditions in an open region. (¢) Elliptic equations (no real characteristics), Dirichlet or Neumann
boundary conditions in closed region.

First Order Equation

du ou
— — = 1 23.8
5 +a o 0 0<x< ( )
L . . du

One initial condition given {u(x, 0) or 8_t(x’ 0)

ad
One boundary condition given at x = 0 {u((), t) or a—u(O, t)
x
(2) Parabolicequations associated with Dirichlet or Neumann conditions in an open
region (Figure 2.3.1b).

9 82
M g 0g<x<1 (2.3.9)
ot dx?

.. . a
One initial condition given {u(x, 0) or a—L;(x, 0)
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d
Two boundary conditions given { w(0,1) or a—u(D, t)
X

{u(l, f) or g—x(l,t)

(3) Elliptic equations associated with Dirichlet or Neumann conditions in a closed
region (Figure 2.3.1c).
Pu

E + a—y—z =0 in Q (2.3.10)

Two boundary conditions given

u on I'p

du
— on T
an N

where I'p and Ty denote the Dirichlet and Neumann boundaries, respectively.

In general, more complicated boundary and initial conditions are required for CFD.
Discussions on detailed boundary conditions for the Euler equations and the Navier-
Stokes system of equations in FDM will be presented in Section 6.7, various aspects
of boundary conditions associated with FEM in Sections 10.1.2, 11.1, and 13.6.6, and
special boundary conditions for multiphase flows in Section 22.2.6.

2.4 SUMMARY

The basic properties of partial differential equations have been described and clas-
sified as elliptic, parabolic, and hyperbolic equations. The Navier-Stokes system of
equations which represents mixed eiliptic, parabolic, and hyperbolic partial differ-
ential equations can be written in three different forms: first law of thermodynam-
ics (FLT) nonconservation form, conservation form of Navier-Stokes system (CNS),
and control volume-surface integral form (CVS). The nonconservation form of the
Navier-Stokes system of equations is derived from the first law of thermodynamics
(FLT) written in terms of primitive variables, suitable for low-speed incompressible
flows in which the solution surfaces are relatively smooth and not discontinuous.
The conservation form of the Euler equations or Navier-Stokes (CNS) system of
equations, on the other hand, is convenient for discontinuities such as in shock
waves, thus suitable for high-speed compressible flows. Another conservation form
is the control volume-surface (CVS) integral equations, applicable for the finite
volume methods in which conservation requirements through discrete interior bound-
ary surfaces as well as the exterior boundary surfaces are self-enforced. Relation-
ships of these three forms of the Navier-Stokes system of equations have been
mathematically linked together, traced back to the first law of thermodynamics
[Chung, 1996].

The governing equations presented in this chapter are based on the Eulerian coor-
dinates, which are fixed on the reference coordinates in which velocity components
of fluid particles are calculated at any fixed point rather than tracing the particles
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downstream. In some problems, however, it is convenient to use the Lagrangian co-
ordinates where the coordinate points are allowed to move together with fluid parti-
cles such as in multiphase flows. This subject will be discussed in Section 16.4.2 and
Chapter 25.

In this chapter, we also discussed the boundary conditions for simple geometries and
simple physics. The general method of identifying the existence of Neumann and Dirich-
let boundary conditions of higher order partial differential equations was demonstrated.
However, in reality, determination of boundary conditions is a difficult task in multi-
dimensional, complex geometrical configurations with complex physical phenomena.
Applications of boundary conditions will be the subject of discussion throughout the
remainder of this book.
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PART TWQ

FINITE DIFFERENCE METHODS

finite difference approximations. The subjects to be covered here include basic

concepts of finite difference theory, various formulation strategies, and appli-
cations to incompressible and compressible flows. Finite volume methods (FVM) via
FDM are also presented.

Although FDM as applied to CFD is widespread and many textbooks are available,
the purpose of Part Two is to make detailed comparisons with other methods such as
finite element methods (FEM) to be presented in Part Three (particularly in Chapter 16)
for the benefit of the beginner and the practitioner alike. Historical developments,
traditional treatments of finite difference methods, and some recent advancements are
presented for this reason.

Chapter 3 discusses derivations of finite difference equations, followed in Chapter 4
by various finite difference schemes for solutions of elliptic, parabolic, hyperbolic, and
Burgers’ equations. General fluid dynamics problems of incompressible and compress-
ible flows are presented in Chapters 5 and 6, respectively. Finally, finite volume
methods (FVM) via FDM are discussed in Chapter 7.

P art Two presents the finite difference methods (FDM) and topics related to



CHAPTER THREE

Derivation of Finite Difference Equations

The basic idea of finite difference methods is simple: derivatives in differential equations
are written in terms of discrete quantities of dependent and independent variables,
resulting in simultaneous algebraic equations with all unknowns prescribed at discrete
mesh points for the entire domain.

In fluid dynamics applications, appropriate types of differencing schemes and suit-
able methods of solution are chosen, depending on the particular physics of the flows,
which may include inviscid, viscous, incompressible, compressible, irrotational, rota-
tional, laminar, turbulent, subsonic, transonic, supersonic, or hypersonic flows. Dif-
ferent forms of the finite difference equations are written to conform to these different
physical phenomena encountered in fluid dynamics.

In this chapter, we present various methods for deriving finite difference equations
of low and high orders of accuracy. Truncation errors, as related to the orders of accuracy
involved in the approximations, will also be discussed.

3.1 SIMPLE METHODS

Consider a function u(x) and its derivative at point x,

A _
dulx) _ WX+ AY) — () (3.1.1)
dx Ax—0 Ax
If 2(x + Ax) is expanded in Taylor series about u(x), we obtain
du(x)  (Ax)? %u(x) (Ax)® du(x)
u(x + Ax) = u(x) + Ax P R + TRy + .- (3.1.2)
Substituting (3.1.2) into (3.1.1) yields
du(x) , du(x)  Ax d%u(x)
— = 3.13
% Alill’o(aerz axz T (3:13)
Or itis seen from (3.1.2) that
ulx + Ax) —u(x)  du(x) Ax du(x) ou(x)
Ax 8x+2 8x2+ 8x+(x) (3.14)
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DERIVATION OF FINITE DIFFERENCE EQUATIONS

The derivative 24 in (3.1.4) is of first order in Ax, indicating that the truncation

ox

error O(Ax) goes to zero like the first power in Ax. The finite difference form given by
(3.1.1), (3.1.3), and (3.1.4) is said to be of the first order accuracy.
Referring to Figure 1.2.1, we may write u in Taylor series at i + 1 and i — 1,

du Ax? [ d%u Ax? [ u Ax* [ 0%u
PR (LU WS o A WG (CICD W2l (AL IR I
iy =i+ x(8x>i+ 2 (sz)i—l- 3! (8x3)i+ 41 (8x4)i+ (3.13)

A ou N Ax? [ 3%u AxX? (93u N Ax* [ 0%u N (3.1.6)
g = u; — Ax| — — — — [ — 1.
= ax ), " 2 \axz). T 3 \axd ), T A \axt ),

Rearranging (3.1.5), we arrive at the forward difference:

du Uiyl — U

—}y =" +0(A 3.1.7
( ax)i L oA (3.17)

Likewise, from (3.1.6), we have the backward difference:

Ju W — Ui

oy =2 = A 3.1.8
( ax)i 14 oA (3.18)
A central difference is obtained by subtracting (3.1.6) from (3.1.5):

du Uip1 — Ui 5

— ] =" —— 1+ 0O(A 3.1.9
(Bx)i 2Ax +0(axr) ( )

It is seen that the truncation errors for the forward and backward differences are first
order, whereas the central difference yields a second order truncation error.
Finally, by adding (3.1.5) and (3.1.6), we have

i1 — 20 1 ’ Ax)? (9
Wit1 U +u ]:(3 Lt) +( x) (a_u) R (3.1.10)

Ax? dx2 12\ 9x*

This leads to the finite difference formula for the second derivative with second order
accuracy,

3u Wipl — 20 + 1
— ) = O(Ax? 3.1.11
( axz),. 2 HUL L oax) (3.111)

Note that these results were intuitively obtained in Section 1.2 by approximations
of slopes of a curve, without the notion of truncation errors.

3.2 GENERAL METHODS

In general, finite difference equations may be generated for any order derivative with
any number of points involved (any order accuracy). For example, let us consider a first
derivative associated with three points such that

ou\ au; + bu;, 1 +cu; >
ax/); Ax

(3.2.1)



3.2 GENERAL METHODS

The coefficients a, b, c may be determined from a Taylor series expansion of upstream
nodes ;1 and u;_» about «; (one-sided upstream or backward difference)

A (—Ax)? [ 3%u (—Ax)? [ d%u
=+ (—any 2 ou )+ 322
Uin1 =t + ( Ax)(ax),.Jr 2 (axz),.+ 3! a)ﬂ)i+ (3.2.22)
=y 4 (2ax)( D) 4 (SR () (L2807 (0 (3.2.2b)
iz =t Y\ ox i-+ 2 ax? /. 3! ) o

from which we obtain

d
av; +bu;_y+cuio =(a+b+c)u; — Ax(b+ 2c)(£)

{

+ %ﬂ(b+4c)(%;%)i + O(Ax?) (3.2.3)

It follows from (3.2.1) and (3.2.3) that the following three conditions must be satisfied:
a+b+c=0 (3.2.4a)
b+2c=-1 (3.2.4b)
b+4c=0 (3.2.4c)

The solution of (3.2.4) yieldsa = 3/2, b = —2, and ¢ = 1/2. Thus, from (3.2.1) we obtain

ou 3u; — 4wy 4w o 5
— ] = A 325
(Bx)i 2Ax +O(ax) ( )

If the downstream nodes ;. and u;, are used (one-sided downstream or forward
difference), then we have

ouN 3w A —uip
dx i_ 2Ax

+ O(AX?) (3.2.6)

A similar approach may be used to determine the finite difference formula for a
second derivative. In view of (3.2.3) and setting

a+b+c=0 (3.2.7a)
b+2c=0 (3.2.7b)
b+dc=2 (3.2.7¢)
we obtain
3%u U — 20 + U2 3 u
— ] = A . 32.8
(33‘2)5 Ax? TAE T (32.8)

This implies that the one-sided formula provides only the first order accuracy in contrast
to the two-sided formula, which gives the second order accuracy as seen in (3.1.11).

The foregoing procedure may be transformed into a systematic form in terms of
“displacement” and “difference” operators so that difference formulas may be obtained
with a preselected order of accuracy [Hildebrand, 1956; Kopal, 1961; Collatz, 1966)],
among others. These results are summarized next.
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DERIVATION OF FINITE DIFFERENCE EQUATIONS

Forward Difference Formulas
The Taylor series expansion (3.1.2) may be written in terms of the displacement
operator E and the derivative operator D,

Eu(x) =[1 + AxD + (AxD)*/2! + (Ax D)’ /3! + - - -] u(x) (3.2.9)

with Du = g—';, E=¢e2P and D= —Al; In E. These definitions lead to the first derivative
of u at i in the form

(g—Z)l = —A~1—£ln(1+8+)u,- = ALX(B‘* — 57+2+3_;ri - —82—4+---)u,- (3.2.10)
where 8" is the forward difference operator,

ot = E—1, T = uip — u; (3.2.11)
with E being defined such that

Fuj = u;1, E'u; = U p (3.2.12)

It is now obvious that the order of accuracy increases with the number of terms kept on
the right-hand side of (3.2.10) given by

Ty 13 Y
(%)izi(w_l)_wzl) +(}531) “(E41) +"')u" (2139

which leads to

First Order Accuracy

du Uipl — U Ax d*u
(51 St (3.2.14)

Second Order Accuracy
(Bu) _ —3u; +4ui ) — Ui Ax? 3u

— — 3.2.15
0x 2Ax * 3 9x3 ( )

i

Backward Difference Formulas
A backward difference formula can be derived similarly in the form

u -1 1 o2 -3 g
s (1 -y = e —
(ax)i Ax n u Ax( + 2 + 3 T 4 + )u

1 (1-ENH (A-EYHY (- E*N
= — (1= E! co g
Ax {( e ]”
(3.2.16)
where 8~ is the backward difference operator,
3 =1—E'  ®dw=uwu—u_ (3.2.17)

with
E_lu[‘ =U; 1 (3218)



3.2 GENERAL METHODS

These definitions lead to the following schemes:
First Order Accuracy

du w —ui_;  Ax du
(a_) =" ax T2 (3:2:19)

Second Order Accuracy
du _ 3u; — 4w+ i " Ax? 33u
ax/), 2Ax 3 9x3

(3.2.20)

Central Difference Formulas
The central difference formulas are derived using the following definitions:

du; = Uir1/2 — Ui—12 = (El/z — E-I/z)u[‘ (3221)
with
8 = e P2 _ ¢=2¥D/2 — pginh(Ax D/2) (3.2.22)
which leads to the first derivative of u at i in the form
At 1 d 1 & 365 58
— 2sinh™! m— - =+ — - —— 4.y 3.2.23
(Bx) Ax( sin 2)“ Ax( 24 640 768 )” (32.23)

With these definitions, we obtain

Second Order Accuracy (with the first term)

ou Uil =81 Ax? u

—) = — — 3.2.24
(Bx)i Ax 24 9x3 ( )
Fourth Order Accuracy (with the first two terms)

du 1 3 28 u

The half-integer mesh points may be avoided by choosing

ou 1 /. & 3

— ) =— (8- + =¥ : 3.2.26
(ax)i Ax( +5' i )u, ( )

where & is the alternative central difference operator such that

< 1 1

BLL,‘ = i(E — E“l)u,- = E(u,-H — Lt[_1) (3227)
These definitions provide

Second Order Accuracy

ou i1 —ui—1 (Ax)? 3u

— ] = — 32.28
(Bx)l 2Ax 6 ox3 ( )
Fourth Order Accuracy

Ju —Uip + 8u,~+1 — 8145_1 + u;—» Ax? 8 u

— ] = 3229
(ax), 12Ax + 30 9x5 ( )
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50 DERIVATION OF FINITE DIFFERENCE EQUATIONS

3.3 HIGHER ORDER DERIVATIVES

Finite difference formulas for higher-order derivatives may be derived using the op-
erator technique similarly to the one employed for the first order derivative. Let us
consider the forward difference relation given by (3.2.10) and extend it to higher order
derivatives as

a"u 1
- = —TJIn(1 +y\n ;
(axn),‘ Ax”[ n(1+o7)]"u
1 n n(3n+5)
— &t — _6+(n+1) PACIE T V) o 4(n+2)
Ax" l: 2 + 24 ®
_ nfn+2)(n+3)
48

50 ] “ (33.1)

Similarly for the backward difference, we write

(a”u)i = L (1 = ),

ax" Ax”

— 1 6— + E + 873 _|_ " .
RN R i

1 _ n n(3n+5)
— n | te(n+l) | NPT Y e (n42)

A |:6 + 26 + o S
2 3
N n(n+ 4)8(11 + )6—(n+3) T } " (33.2)

The central difference formulas are in the form

0"u 2 8\
=|—sinh =] w
ax" J, Ax 2

1 &3 37 587 " _
Axh !

§— —
24 V620 " 7168
1 n n {224+ 5n
= 51— —8 + — Ry
Ax [ 2%t 64( 90 )

n(5+”—1+(”_1)(”"2))86+...]ui (333)

45\ 7 5 35

If n is even, the difference formulas are obtained at the integer mesh points. If n is
uneven, however, the difference formulas involve half-integer mesh points. In order to
maintain the integer mesh points, we may use

n 2 8 n
(8 u) = ——“‘—1(— SiI‘lh_1 '—) U;
ax" /. 82 Ax 2

50 +32n + 135 54
24 5760 w

(3.3.4)




3.3 HIGHER ORDER DERIVATIVES

where

87\ *
=(14+ —
w=(1+5)

Based on these formulas, we summarize the second, third, and fourth order derivatives
below.

Second Order Derivative (n = 2)

9’ 1 11 5
(8_;;) =<z (6*2 — &5 + ﬁ8+4 — 68+5 + . -)u,-, from (3.3.1) (3.3.5a)

(82u
ax? /,

11 5
@4+83+—%4+—65+~)m, from (3.3.2) (3.3.5b)

Ax? 12 6

°u 1 8t 8 8®

oy ¥ - — 4 — — — - f 3. 3.5
(axZ)i sz( 12790 560 " )”’ rom (33.3) - (33.5¢)

2%u [ 58* 239

— ) = (- 3" AX®) Ju, 3.3.4 3.5d
(sz)f sz( o +57608 + O(AX®) Ju,, from ( ) (3.3.5d)
Forward Difference

First Order Accuracy

3’u 1 9u
(a—xz) = Z;(UH_Q — 21/{,'_;_1 + Lt,‘) - AXQ (336)

Second Order Accuracy

9%u 1 11 2*u
(ﬁ) = E(Zui - 5L£t+1 + 4Ll,'+2 — Llj+3) + EAXQW (337)
Backward Difference
First Order Accuracy
*u 1 u
(5;) = A—xz(ui — 2”5_1 + ul'_z) + AXQ (338)
Second Order Accuracy
9’u 1 11 9*u
(5?) = A—xz(Zui —Suiy + 40 —ui_3) — EAXZQ (3.3.9)
Central Difference
Second Order Accuracy
%u 1 Ax? 3%u
= | = ——z(u,-_H —2u; + Ltl;l) — 5 aa (3310)
dox ), Ax 12 dx

Fourth Order Accuracy

a%u 1 Ax* 5%
22} = (~wpan + 160151 — 30u; + 160 — 1) + —— — 311
(sz)i Tram W2 ¥ 0 =30 160 — o) + T are (3300)
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DERIVATION OF FINITE DIFFERENCE EQUATIONS

Central Difference — Half Integer Points

Second Order Accuracy

3u 1 5 0%
(b—x?)l = SAxZ (“i+§ RS S +“i—g) — 5 AxT— (3.3.12)

Fourth Order Accuracy

32u 1
(___)_=:48Ax2( Sty 5 + 3,y — S, — S,y + 30y — Su;_s)

ax? /. i+3
259 3%
— Ax? 3.3.13
+5760 8x6 ( )

Note that the last scheme requires six mesh points to achieve the fourth order accuracy,
whereas for the same accuracy, the scheme given by (3.3.11) requires only five mesh
points.

Third Order Derivative (n = 3)
Forward Difference
First Order Accuracy

u 1 Ax 3*u
(5?)1 = X;g(uj.g — 3LL,‘+2 + 3L£,‘+1 — ng) — 7@ (3314)
Second Order Accuracy

u 1 21 ,8u
(ﬁ)l = m(—3ui+4 + 14LL,'+3 - 24L£,‘+2 + 18LL,‘+1 — SLL,‘) + — 7 AX — (3315)
Backward Difference
First Order Accuracy

au 1 Ax 84

Y -3 i— 3 -2 7 Wi 3.3.16
(55), = amts = 3w 32—+ 51 @319
Second Order Accuracy

u 21 u

— Su; — 18u;_1 + 24u;_7 — 14u; 3+ 3ui_4) — = Ax*— 33.17
(8x3) 2A3(“ ticy + 24 = M3 & 3uia) = AxTs - (3307)
Central Difference
Second Order Accuracy

u 1 1 85u

9%y i — 2u 2, — Uj_2) — = Ax*— 3.3.18
(8x3)- 2Ax3(u+2 Uit +20i-) = Ui-2) 4 X x> ( )
Fourth Order Accuracy

u 1 7 . 49u
(@)z‘ = S—A";(—uws +8uo — 3wy — 13w, — 8uy_p +ui—3) + E—GAX Py

(3.3.19)



3.4 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULAS

Central Difference — Half Integer Points

Second Order Accuracy

u 1 Ax2 95u
Fourth Order Accuracy
u 1
37 u
—~Ax'— 3.3.20b
T 1920 57 ( )
Fourth Order Derivative
Forward Difference (first order accuracy)
24u 1 u
(w)i = a (Mira = Atiys + 60Uy = iy + 1) —28x -5 (3.2.21)
Backward Difference (first order accuracy)
*u 1 3u
(5;{)1' = —A—xz(ui — 4wy + 612 — Ay + ui—g) + 2Axa—x5 (3.2.22)
Central Difference (second order accuracy)
du 1 Ax? 9%u
(5;&)5 = K)‘Cz(uwz —Aui + 60 —duiy +ui ) — T (3.2.23)

Various order finite difference formulas up to fourth order derivatives are summarized
in Table 3.3.1.

3.4 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULAS

Multidimensional finite difference formulas can be derived using the results of one-
dimensional formulas. For two-dimensions, we consider

X, = Xp+ IAX

yi = Yo+ JAy

as defined in Figure 3.4.1. The forward and backward operators are now given by 8-
and Byi for x- and y-directions, respectively. The first partial derivatives in the x- and
v-directions are

du 1 Uiy i — U
— — 8w +O(Ax) = L U A 3.4.1
(ax)ij ¥+ O(Ax) = =L 4 O(ax) (3:4.1)

ou 1 Ui i) — U
) = st + O(Ax) = LT 4 oA 342
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54 DERIVATION OF FINITE DIFFERENCE EQUATIONS

Table 3.3.1 Various Order Finite Difference Formulas

(a) Forward Difference, 0(A x) (d) Forward Difference, O(A x2)
u; Uir Uip Uipz Uiy u; U q uj, 2 Ui Ui a Uiy
9 d
Axt ax 2 3 4 4
9x dx
32 2
P ) | 207U > s 4 -
dx? dx?
83 a3
A 3 3 1 oA s 18 24 14 3
ax3 ax?
34 4
Aavts® 1 g 6 -4 1 AxtH 3 14 26 24 11 =2
dxt ax4
(b) Backward Difference, 0(Ax) (e) Backward Difference, 0(A x?)
Uiy U3 Uit U U U-s U4 Uiz Ug2 Ui u;
d d
Ax 101 2axM 1 43
dx d
3’ A2
A2l 1 2 1 A 1 4 52
ax2 9x2
83 83
N G 13 3 1 2a02Y 3 _14 24 18 5
dx? dx’
9 a4
Axt Y 4 6 4 1 axtZ® L 11 24 26 14 3
ax* ax4
(c) Central Difference, 0(A x?) (f) Central Difference, 0(A x*)
Up Uiy W U1 Uy Uiz Uiz U~ U Upiyq Uiy2 U3
a 9
2axY 1 0 1 12ax 24 1 8 0 8 -1
ax dx
a2 2
L 1 2 1 1A 2 1 16 30 16 -1
dx? dx?
93 BN
T L | 0o 2 1 garis® 1 8 13 0 -13 8 -1
ax? ax3
4 84
Ax“M —4 6 -4 1 6Ax4—u -1 12 -39 56 -39 12 -1
dx? axt

Similarly, the second order central difference formulas for the second order derivatives
are of the form

(82u) U1 — Zu,‘_j + Ui-1; Ax? 3%u (3 4 3)

ax? J Ax? 12 9x* o
u _ Uijg1 — 2Lt,"j + Uiy Ay2 d%u (3 4 4)
3y? ), N Ay? 12 9x* o



3.4 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULAS

(i-1, j+1) (i, j+1) (i+1,j+1)

Figure 341 Two-dimensional mesh. (-1, 2L i+l )

(-1, ;-1 ¢.J-1 i+l -1

Let us now consider the Laplace equation

whose finite difference formula is obtained as the sum of (3.4.3) and (3.4.4), resulting
in a five-point scheme

& 8,% Wiy — 2w Uiy Wi 20+ U
Au;j = (sz + K—Z)uij = A2 + Ay
+O(AX*, Ay?) (3.4.52)
For Ax = Ay
Wirlj+ Ui+ + Uy — 4 Ax? 3% d*u
AWy, = 2 ) J g _ — 4 — 3.4.5b
o Ax? 12 \ 9x* + ay* ( )

as graphically shown in Figure 3.4.2a.
An alternative representation of (3.4.5a) is given by

1 2 1 2
APuy; = [(A_x““yax) ¥ (—A—J;umy) ]u”

1
= [—(Ey +24+ E)(E -2+ E)

4Ax?
1 — -
tap B2+ ENE -2+ 1)} i (3.4.6)
O Q

Figure 3.4.2 Five-point finite difference mesh. (a} Reg-
ular operator. (b) Shift operator,

(a) (b)
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56 DERIVATION OF FINITE DIFFERENCE EQUATIONS

where E; and E, are the shift operators resulting from

1

aiz(Eé—E;?)zzEx—z+E;1
2 1.4 SN -1
by = E(Ey +Ey*) =Z(Ey+2+Ey)

efc.
For Ax = Ay, (3.4.6) is simplified as (Figure 3.4.2b)

1
A(z)uij = m(ui+l,j+1 i o1+ Ui o1+ Wiy e — AU ) (3.4.7)

For higher order terms, we may write

Ay? 3% \[/d*u Ax® d*u Ax? 2 \/8*u Ay’ d*u
APy = 1+—i——3 — At H|1+—F= —2+—y—4
4 9y ax 12 ax*/; 4 ox ay 12 oy ij

w1 A , % (Ax2+Ay2) 3*u

127" 9t T 1270 58 4 ooyt (348)
with the truncation error being O(Ax?, Ay?). Note that this scheme involves the odd-
numbered nodes detached from the even-numbered nodes (Figure 3.4.3). Note that
point (i, j) is coupled to the points marked by a square, while there is no connection
to the even-numbered points marked by a circle. Thus, the solution oscillates between
the two values a and b when passing from an even to odd-numbered point, satisfying
the difference equation A®y;; = 0. However, it will not satisfy the difference equation
(3.4.5).

The well-known nine-point formula can be derived by combining (3.4.8) with A()y; i

APu; = (aAM + bAP)

1 b b
= —A—x—z[(&rz + 8y%) + ESxZSyZ]u,-j = A(l)uij + §8x28y2u,-,-

— Auy + (3.4.9)

AX*[ 8%u N *u L 6b *u
12 [ox* 9yt dx*ayt

where a + b = 1. For b = 2/3, we arrive at the scheme depicted in Figure 3.4.4a, which

can also be obtained from finite elements. For b = 1/3, the Dahlquist and Bjorck scheme

a b a
Cx {t

b
]

A .4q Figure 343 Odd-even oscillations of the five-point
scheme.

-4b [

.



3.5 MIXED DERIVATIVES 57

1 1 ) 1 1 1
-20
; a(; 8,\ J) I IJM O /P 1

o— > o o O J)
1

—_—
[
—

(a) (b}

Figure 3.4.4 Nine-point molecule. (a) Nine-point formula with 6 = 2/3.
{b) Nine-point formula with b = 1/3.

[1974] arises as shown in Figure 3.4.4b, providing the truncation error

Ax* [ 9? N 32\’ Ax? A2
—— =t ju=——AUu
12 \ ax2 ~ 9y? 12

For Au = \u, the nine-point operator with A® = 2AM 1 A®) gives a truncation error
p P 3 3 g

Ax*

N2
12

Therefore, the corrected difference scheme

A 2
APy ; = ()\ - )\2%) ¢

has a fourth order truncation error.
Anextension to three-dimensional geometries is straightforward. Some applications
to 3-D problems will be discussed in Chapter 7.

3.5 MIXED DERIVATIVES

The simplest, second order central formula for the mixed derivative is obtained from
the application of (3.2.3) in both directions x and y.

9%u 1 dx? dy?
= — b (1- 2% 4 1= 2 L o) u;
(aan’)i/‘ /—\XA}’” ; [( 6 +O(ax )):lllyay[( 6 +Olay )):lu‘]

(3.5.1)
This leads to a second order accuracy (Figure 3.5.1a),
9u 1
= Deydy ) ui f + O(AX?, Ay?
(axay)ij /_\.xAy(M By y)u‘]"' (Ax yo)
= SRl Tl ULl TS a2 AR (3.5.2)

4AxAy
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1 —
J } Y
i -1

(a) Eq. (3.5.2) (b) Eq. (3.5.3)

(¢) Eq. (3.5.5) (d) Eq. (3.5.7) (&) Eq. (3.5.8)
Figure 3.5.1 Mixed derivatives.

An alternative approach as shown in Figure 3.5.1b is given by

axoy /., - AxAy

1
y(ut+1.j+1 — Uiy et — Wil + Ui 7) + O(AXY, Ay)  (35.3)

’u 1
= (18:8] ) i + O(Ax”. AY)
i)

- 2AXA

A similar form can be obtained for the truncation error of O(Ax, Ay?). A first order
in both x and y is derived in the form

3*u |
= --—8x o Uij + O(Ax, Ay)
axdy ),  AxAy * 7
1
= AxAy (u,-+1.j+1 — Uil — Uiyl + Lt,'.j) + O(Ax, Ay) (354)

This scheme can be altered to give a second order accuracy ati + 3, j + 3,

3u

1

T Axay (Uit jo1 — i) — i1+ ) + O(AX°, AYY) - (355)

as shown in Figure (3.5.1c).
Applying backward differences in both directions, we obtain

9%u 1
= 88, u;; + O(Ax, A
(Bxay)i AxAy " vt + O(Ax, Ay)
1
= m(uiq,;‘—l —ui 1 — U1+ ;) +0O(Ax, Ay)
1
= byt 1 ;1 + O(Ax, Ay) (3.5.6)

AxAy
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Summing (3.5.4) and (3.5.6), we obtain a second order formula,

9°u 1 -
(axay)_ = 2AxAy[8'j8; + 9, By ]uij + O(sz, Ayz)
i

1
~ 2AxAy (i1t = tin j — Wi jy F it — w1y = w1+ 2]
+ O(Ax?, Ay?) (357

This is shown in Figure 3.5.1d. Another form can be obtained by combining forward
and backward differences as (Figure 3.5.1¢)

8’u 1 o
(Bxay). - 2AxAy 88, + 8,8/ Tui; + O(Ax*, AY?)
1
- m[ui“‘j — Uil 1 F Wi o — Wiy e U1 — 20
1
= Sanny Odtist o BBy i) + O(AX*AY?) (358)

Combining (3.5.7) and (3.5.8), we recover the fully central second order approximation
(3.5.2). Therefore, the most general second order mixed derivative approximation can
be obtained by an arbitrary linear combination of (3.5.7) and (3.5.8) [Mitchell and
Griffiths, 1980].

’u 1
(3i5). = ey s ey + by by )
+ O(Ax?, AY?) (3.5.9)

witha + b= 1.

3.6 NONUNIFORM MESH

The standard Taylor series expansion may be applied to nonuniform meshes. The first
derivative one-sided first order formula takes the form

du\ iy —ui  Axi 8u (3.6.1a)
ax /,  Axi 2 oax? o

The backward formula becomes

due W — U Ax; 9%u
— ) = 3.6.1b
(Bx)i Ax; T2 ( )

where Ax; = x; — x;_1, etc.
The central difference is obtained by combining (3.6.1a) and (3.6.1b), which will
lead to the second order formula

a_u _ 1 /_\.x,- (u- _ Lt) n Axi+1 (u- o ) _ Ax,'Axt-H &
dx ; Ax; + Axl-+1 Axi+1 i+l ! Ax; : a 6 ax3
(3.6.2)
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It can also be shown that Taylor expansion leads to a forward or backward scheme. For
example, for a forward scheme, we obtain

(?ﬁ) _ (Axi+1 + Ao Uis) — Ui AXipn Ui — U )
9x AXiyr Ax;y Ax; 2 Axivy + Axigo

i

N Axip1(Axip + Axipo) 3u
6 ax3
The three-point central difference formula for the second derivative is of the form

9%u Wi —U U — U 2 1 u
= _ i+1 P i—1 + _(Axi+1 . ij)___s
0x* /; AXji1 AXx; Ax; 1 +Ax;, 3 dx

(3.6.3)

Ax} |+ Ax) dtu
12(Ax,~+1 + /_\.x,-) x4

(3.6.4)

Note that a loss of accuracy in nonuniform meshes is expected to occur and abrupt
changes in mesh size in (3.6.4) result in the first order accuracy. For example, the third
order accuracy of (3.6.4) is reduced to the second order for Ax;,1 = Ax;.

3.7 HIGHER ORDER ACCURACY SCHEMES

For many applications in fluid dynamics with discontinuities and/or high gradients such
as in shock waves and turbulence, it is necessary that higher order accuracy be pro-
vided in constructing difference equations for the first order, second order, and higher
order derivatives. Lele [1992] presents various finite difference schemes which are gen-
eralization of the Padé scheme [Hildebrand, 1956; Kopal, 1961; Collatz, 1966]. These
generalizations for the first order derivatives are given by

Uiy1 — Ui Uiy — Ui 2 Ujp3 —U;j—3
b
2Ax 4Ax te 6Ax
(3.7.1)

I3 7 7 s '
But; 5+ | +u; +oug + By, =a

with ' = du/dx. The relations between the coefficients @, b, c and a and B are derived by
matching the Taylor series coefficients of various orders. Similarly, the generalizations
for the second order derivatives are given by

Bul_y + a1 + . + Bty
Ui — 2 + u;— Uj o — 2U; +Ui» Wiy — 20 + Ui
:az—H i 11+b1+2 i i—2 Cz+3 { i—3
Ax? 4Ax? 9Ax?
with 1 = d?u/dx’. Again, the relations between the coefficients a, b, c and o and 8 are
derived by matching the Taylor series coeffcients of various orders.

(3.7.2)

Higher Order Accuracy for the First Order Derivatives

Fourth Order Accuracy. Note that, for a =B =0and a =4/3,b=-1/3, and ¢ =0
inserted in (3.7.1), the first order derivative in (3.7.1) leads to the well-known fourth
order central difference scheme.

; du,‘ 1
b= = D Ax (wi 2 —8Buiy + 8uiyy — it2) (3.7.3)




3.8 ACCURACY OF FINITE DIFFERENCE SOLUTIONS

Other higher order accuracy schemes for the first order derivative are obtained from
(3.7.1) as follows:

Sixth Order Accuracy
a=1/3, B=0, a=14/9, b=1/9, ¢c=0
Eighth Order Accuracy

a=4/9, B=1/36, a=40/27, b=25/54, c=0

Higher Order Accuracy for the Second Order Derivatives
Fourth Order Accuracy. The fourth order accuracy for the second order derivative
arises from (3.7.2) by inserting the same constants as in the first order derivative.

1 2 2
u; =du; jdx" =

1
12Ax2 (=2 + 161;1 — 30u; + 16u; 11 — w; 1) (3.7.4)

Higher order accuracy schemes for the second order derivative are obtained by
inserting the following constants in (3.7.2):

Sixth Order Accuracy
a=2/11, B=0, a=12/11, b=3/11, ¢=0

Eighth Order Accuracy

38 —
= 344/1179 _
@=344/1179, B=—.
_ 696119l 2454a—204 1179 — 344
N T — 535 0 ST T o4

These higher order accuracy derivatives have been used extensively in the analysis
of shock waves and turbulence, as will be discussed in Part Five, Applications.

3.8 ACCURACY OF FINITE DIFFERENCE SOLUTIONS

The finite difference formulas and their subsequent use in boundary value problems
must assure accuracy in portraying the physical aspect of the problem that has been
modeled. The accuracy depends on consistency, stability, and convergence as defined
below:

(a) Consistency A finite difference equation is consistent if it becomes the corre-
sponding partial differential equation as the grid size and time step approach
zero, or truncation errors are zero. This is usually the case if finite difference
formulas are derived from the Taylor series.

(b) Stability A numerical scheme used for the solution of finite difference equa-
tions is stable if the error remains bounded. Certain criteria must be satisfied in
order to achieve stability. This subject will be elaborated upon in Sections 4.2
and 4.3.
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(c) Convergence Afinitedifference schemeisconvergentifitssolution approaches
that of the partial differential equation as the grid size approaches zero. Both
consistency and stability are prerequisite to convergence.

The ultimate goal of any numerical scheme is a convergence to the exact solution
as the mesh size is reduced. Discrete time step sizes are chosen adequately as related
to the mesh sizes so that the solution process is stable. The finite difference formulas
studied in this chapter will be used for developing such numerical schemes. Here, the
stability and convergence are important factors for the success in CFD projects and will
be addressed continuously for the rest of this book.

3.9 SUMMARY

In this chapter, we have demonstrated that finite difference equations can be derived in
many different ways. Simple methods and more rigorous general methods by means of
finite difference operator, derivative operator, forward difference operator, and back-
ward difference operator are introduced. Applications to various order derivatives in
multidimensions are presented.

We have also shown how to obtain finite difference equations for higher order
accuracy. They are particularly useful for complex physical phenomena such as in shock
waves and turbulence, as will be shown in Part Five, Applications.

Our ultimate goal is the accuracy of the solution of differential equations. In order
to achieve this accuracy, it is necessary that difference equations satisfy three crite-
ria: consistency, stability, and convergence. Among these, the properties of consistency
and stability reside in the realm of the development of finite difference equations.
Convergence prevails if the requirements of consistency and stability are satisfied.

The consequence of satisfaction of these criteria leads to the assurance of accuracy
in CFD.
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GHAPTER FOUR

Solution Methods of Finite Difference Equations

In this chapter, solution methods for elliptic, parabolic, hyperbolic equations, and
Burgers’ equations are presented. These equations do not represent actual fluid dynam-
ics problems, but the methods discussed in this chapter will form the basis for solving
incompressible and compressible flow problems which are presented in Chapters 5
and 6, respectively. Although the computational schemes for these equations have been
in existence for many years and are well documented in other text books, they are
summarized here merely for the sake of completeness and for references in later
chapters.

4.1 ELLIPTIC EQUATIONS

Elliptic equations represent one of the fundamental building blocks in fluid mechanics.
Steady heat conduction, diffusion processes in viscous, turbulent, and boundary layer
flows, as well as chemically reacting flows are characterized by the elliptic nature of the
governing equations. Various difference schemes for the elliptic equations and some
solution methods are also presented in this chapter.

41.1 FINITE DIFFERENCE FORMULATIONS
Consider the Laplace equation which is one of the typical elliptic equations,

2u  0u

o Ty =0 (4.1.1)

The five-point and nine-point finite differences for the Laplace equation are, respec-
tively,

Uip1 — 22U + Uiy . Wijp1 — 20+

=0 4.1.2
Ax? Ay? ( )
—Ui-2;+ 16L¢i‘1,]‘ — 30uiﬁj + 16L£,‘+1'j — U2,
12Ax2
+ i j_2+ 161«{[,]',1 — 301«!,"]' + 16u,;j+] — U j+2 -0 (413)
12Ay°
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U =u,
5
4
U=uy 5 u=uy
2
i=1,
i=1 2 3 4 5
u=u,

Figure 41.1 Finite difference grids with Dirichlet boundary con-
ditions specified at all boundary nodes.

as discussed in Chapter 3. For illustration, let us consider the five-point scheme (4.1.2)
for the geometry given in Figure 4.1.1.

Wist,j + i1+ Bt ji1 + B o1 — 201+ BPus; =0 (4.14)

where B is defined as § = Ax/Ay. For Dirichlet boundary conditions, the values of u at
all boundary nodes are given. Thus, writing (4.1.4) at all interior nodes and setting

y=-2(1+p%

we obtain for the discretization as shown in Figure 4.1.1,

Ty 1 0 B2 0 0 0 0 07 [u22 [—tt12—Bus1’

1 vy 1 0B20 0 0 0f/us, —Bus,1

0 1 v 0 08>0 0 0] |us —us — B2ug 1

B2 0 0 v 1 0 B2 0 0| |us —U13

0 B2 0 1 v 1 0 B> 0||ms|= 0 (4.1.5)
0 0 B> 0 1 v 0 0 B?||uss —1is5 3

0 0 0B20 0 v 1 0f]|ua4 —uty 4 — Buys

00 0 0 B2 0 1 v 1/|]|usg —B2uz

0 0 0 0 0 B> 0 1 vy ||usa —uts4 — B’uas

Notice that the matrix on the left-hand side is always pentadiagonalized for the five-
point scheme. The nine-point schemes given by (4.1.3), although more complicated, can
be written similarly as in (4.1.5).

There are two types of solution methods for the linear algebraic equations of
the form (4.1.5). The first kind includes the direct methods such as Gauss elimina-
tion, Thomas algorithm, Chelosky method, etc. The second kind includes the iterative
methods such as Jacobi iteration, point Gauss-Seidel iteration, line Gauss-Seidel itera-
tion, point-successive over-relaxation (PSOR), line successive over-relaxation (LSOR),
alternating direction implicit (ADI), and so on.



4.1 ELLIPTIC EQUATIONS

The disadvantage of the direct methods is that they are more time consuming than
iterative methods. Additionally, direct methods are susceptible to round-off errors
which, in large systems of equations, can be catastrophic. In contrast, errors in each
step of an iterative method are corrected in the subsequent step, thus round-off errors
are usually not a concern. We elaborate on some of the iterative methods in Section 4.1.2,
and a direct method of Gaussian elimination in Section 4.1.3. Other methods will be pre-
sented in later chapters, including conjugate gradient methods (CGM) (Section 10.3.1)
and generalized minimal residual (GMRES) algorithm (Section 11.5.3).

4.1.2 ITERATIVE SOLUTION METHODS

Jacobi Iteration Method

In this method, the unknown u at each grid point is solved in terms of the initial
guess values or previously computed values. Thus, from (4.1.4), we compute a new value
of u; ; at the new iteration k + 1 level as

1

”ﬁl = m[uz]’;l,j + ufml,j + Bz(”zk,jﬂ + ”f'(.j~1)] (4.1.6)
where k represents the previously computed values or the initial guesses for the first
round of computations. The computation is carried out until a specified convergence
criterion is achieved.

We may use the newly computed values of the dependent variables to compute the
neighboring points when available. This process leads to efficient schemes such as the
Gauss-Seidel method.

Point Gauss-Seidel Iteration Method

In this method, the current values of the dependent variables are used to compute
neighboring points as soon as they are available. This will increase the convergence rate.
The solution for the independent variables is obtained as

1
k1 k K+l 2(, .k k+1

”i,er = 2(1 + B9) [“i+1,j + uijl.j +B (ui.j+1 + “1.11)] (4.1.7)
The k + 1 level on the right-hand side of (4.1.7) indicates that the solution process takes
advantage of the values ati—1 and j—1 which have just been calculated in the previous
step.

Line Gauss-Seidei Iteration Method
Equation (4.1.5) may be solved for the three unknowns at (i — 1, j), (i, j), (i + 1, j),
as follows:

k
ufff_,. —2(1+ Bz)ufjl + ”;Ll'j = —[32(uffj+1 + ulkjl_l) (4.1.8)

which leads to a tridiagonal matrix. Note that uf‘i] is known at the k + 1 level, whereas

u{‘ i1 was determined at the kth level. This method converges faster than the point
Gauss-Seidel method, but it takes more computer time per iteration. The line iteration
technique is useful when the variable changes more rapidly in the direction of the

iteration because of the use of the updated values.
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Point Successive Qver-Relaxation Method (PSOR)
Convergence of the point Gauss-Seidel method can be accelerated by rearranging
(4.1.7),

k+1 k

k k+1 k+1 2y, .k
ui.j =ut,j+ z+1]+uz+1]+B ( L+l +ul4j_ 1)_2(1+B )ui.j]

(4.19)

201+ BZ)[

The idea is to make uf‘_ j approach uf-‘f;l faster. To this end, we introduce the relaxation
parameter, w, to be multiplied to the terms with brackets on the right-hand side of
(4.1.9),

k+l k w k k1 k+1 2k
wy =yt 2(1+82)[ Frg bt B ) = 2004 BYu ]
or
k _ k
iy = (L= o, 2(1 n Bz)[ frg T B )] (4.1.10)

where we choose 1 < w < 2 for convergence. This is known as the point successive
over-relaxation procedure. For certain problems, however, a better convergence may
be achieved by under-relaxation, where the relaxation parameterischosenas() < w < 1.
Note that for ® = 1 we recover the Gauss-Seidel iteration method.

For a rectangular domain subjected to Dirichlet boundary conditions with constant
step size, we obtain the optimum relaxation parameter

2—4/1-
(J.)Op[ = Ta (4111)
with
i i 2
cos( )+82cos( )—‘
a= M- 1 M1 (4.1.12)

1 +B? J

where IM and JM refer to the maximum numbers of i and j, respectively. Further
details are found in Wachspress [1966] and Hageman and Young [1981].

Line Successive Over-Relaxation Method (LSOR)
The idea of relaxation may also be applied to the line Gauss-Seidel method,

o F =200+ B ol = —(1 — @) 201+ B uf ; — 0By + 4 EL)

(4.1.13)

where an optimum relaxation parameter w can be determined experimentally, or by
(4.1.11).

Alternating Direction Implicit (ADI) Method
In this method, a tridiagonal system is solved for rows first and then followed by
columns, or vice versa. Toward this end, we recast (4.1.8) into two parts:

k

11]

=21+ BN +2 + ’“‘ﬁﬁf - *Bz( fin +”ﬁzl) (4.1.14a)



4.2 PARABOLIC EQUATIONS

and

- 2(1+ B 4 Rl = —( ) (4.1.14b)

Here (4.1.14a) and (4.1.14b) are solved implicitly in the x-direction and y-direction,
respectively. The relaxation parameter o may be introduced to accelerate the
convergence

k k k41 ket
o} 2B bl = —(1 - o) 201+ B)uk ;- B (uf 1+ 1)
(4.1.15a)
and
oBHH = 21+ BT + 0Bl = —(1 - o)2(1+ BT — () 4+ ) /)
(4.1.15b)

with the optimum w being determined experimentally as appropriate for different phys-
ical problems.

41.3 DIRECT METHOD WITH GAUSSIAN ELIMINATION

Consider the simultaneous equations resulting from the finite difference approximation
of (4.1.2) in the form

ki + ko + - =g
knuy + koo + - =g

(4.1.16)
knlun. « .o :gn

Here, our objective is to transform the system into an upper triangular array. To this
end, we choose the first row as the “pivot” equation and eliminate the 1 term from
cach equation below it. To eliminate u; from the second equation, we multiply the first
equation by k31 / kj1 and subtract it from the second equation. We continue similarly until
1) is eliminated from all equations. We then eliminate 15, us, . .. in the same manner
until we achieve the upper triangular form,

ki ki - - U 81
kypp - ||| _ | &2 (4.1.17)
k;ll’l Up g/n

It is seen that backsubstitution will determine all unknowns.
An example for the solution of a typical elliptical equation is shown in Section 4.7.1.

4.2 PARABOLIC EQUATIONS

The governing equations for some problems in fluid dynamics, such as unsteady heat
conduction or boundary layer flows, are parabolic. The finite difference representation

67



SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS

AAPPAPRPARADA: + =1
5 0 L L L

(a) (b)

Figure 4.2.1 Fourier representation of the error on interval (— L, L). (a) Error distribution. (b) Maximum and
minimum wavelength.

of these equations may be represented in either explicit or implicit schemes, as illus-
trated below.

4,21 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

Forward-Time/Central-Space (FTCS) Method

A typical parabolic equation is the unsteady diffusion problem characterized by
u  u
— —a— =0 421

or " ox? (#42.1)

An explicit finite difference equation scheme for (4.2.1) may be written in the forward
difference in time and central difference in space (FTCS) as (see Figure 4.2.1a)

W oy, — 20 ) 2
L= : O(AL, A 422
At Ax? +O(a1, Ax) (42.22)
or
W =u! 4 d(ul, — 2u +ul ) (4.2.2b)
where d is the diffusion number
aAr
d=— 42.3
Ax? ( )

By definition, (4.2.2) is explicit because u/*' at time step n + 1 can be solved explicitly

in terms of the known quantities at the previous time step rn, thus called an explicit
scheme.

In order to determine the stability of the solution of finite difference equations, it is
convenient to expand the difference equation in a Fourier series. Decay or growth of an
amplification factor indicates whether or not the numerical algorithm is stable. This is
known as the von Neumann stability analysis [Ortega and Rheinbolt, 1970]. Assuming
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that at any time step 7, the computed solution ' is the sum of the exact solution & and
error g

w) =i +¢f (4.2.4)
and substituting (4.2.4) into (4.2.2a), we obtain

i i a _ —n - a n i
: " e I (Ax)? (&}, —2a] +a)_)) + W(S?H —2¢] + ¢ )
(4.2.5)
or
entl _gr a
A T A (/. — 2ef +¢' ) (4.2.6)
Writing (4.2.4) — (4.2.6) for the entire domain leads to
U = ﬁn + " (427)
with
A
g = ¢ (4.2.8)
&
U et = C(U" + &) (4.2.9)
et = ce” (4.2.10)
with
d (1-2d) d 0 0
C=14+d(E-2+ENH=]|. d (1 - 2d) d 0 (4.2.11)
0 d (1-2d) d
. : : - -

If the boundary conditions are considered as periodic, the error £” can be decom-
posed into a Fourier series in space at each time level n. The fundamental frequency
in a one-dimensional domain between —L and L (Figure 4.2.1) corresponds to the
maximum wave length of Apax = 2L. The wave number k = 27/\ becomes minimum
as kmin = 7/ L, whereas the maximum wave number k.« is associated with the short-
est wavelength A on a mesh with spacing Ax corresponding to Ayin = 2Ax, leading to
kmax = 7/Ax. Thus, the harmonics on a finite mesh are

ki = jkuin = jm/L= jw/(NAx). j=0,1,...N (42.12)
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with Ax = L/N. The highest value of j is equal to the number of mesh intervals N.
Any finite mesh function, such as €’ or the full solution «, can be decomposed into a
Fourier series

N

8:-1 — Z E—:gz elk,(zAx) —

j==N ]

v

=n jim/N
£ el (4.2.13)

|

-N

with I = +/—1, £ being the amplitude of the j™ harmonic, and the spatial phase angle
¢ is given as

b =kiAx = ju/N (4.2.14)
with & = 7 corresponding to the highest frequency resolvable on the mesh, namely the
frequency of the wavelength 2Ax. Thus
el =y &l (4.2.15)

j=N

Substituting (4.2.15) into (4.2.6) yields

s+l _ mn
€ € ol — @ (énel(i+1)¢ _2gnelit énel(ifl)cb)
At Ax?
or
gl g —de(e! — 247" =0 (4.2.16)

The computational scheme is said to be stable if the amplitude of any error harmonic
€" does not grow in time, that is, if the following ratio holds:

ach+1

gl = =1 foralld (4.2.17)

where g = £"+! /" is the amplification factor, and is a function of time step Az, frequency,
and the mesh size Ax. It follows from (4.2.16) that

g=1+d(e*—2+e'" (4.2.18a)
or

g=1-2d(1 —cosd) (4.2.18b)
Thus, the stability condition 1s

g=1 (4.2.19)
or

1 —2d(1 —cosd) = —1 (4.2.20)
Since the maximum of 1 — cos ¢ is 2, we arrive at, for stability,

0<d<1/2 (4.2.21)
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The von Neumann stability analysis shown above can be used to determine the
computational stability properties of other finite difference schemes to be discussed
subsequently.

OTHER EXPLICIT SCHEMES

Richardson Method
If the diffusion equation (4.2.1) is modeled by the form

ntl -l g — 21 4 ul
u; 2Atui — ( i+1 — ), O(Atz, sz) (4222)

This is known as the Richardson method and is unconditionally unstable.

Dufort-Frankel Method
The finite difference equation for this method is given by

n+l n—1
—+ u;
gt 0‘( il T ZIT + ”:‘1—1)
i i 4223
2At Ax? ( a)

or

(L+2dyt = (1 = 2du ™" +2d (' +ul ), O(AL% Ax?, (At/Ax)?)
(4.2.23b)

This scheme can be shown to be unconditionally stable by the von Neumann stability
analysis.

4.2.2 IMPLICIT SCHEMES

Laasonen Method

Contrary to the explicit schemes, the solution for implicit schemes involves the
variables at more than one nodal point for the time step (n + 1). For example, we
may write the difference equation for (4.2.1a) in the form

Wt — () =20 )

i i i+1 2
= N ., O(Ar, Ax?) (4.2.24)

This equationis written for all grid pointsatn + 1 time step, leading to a tridiagonal form.
The scheme given by (4.2.24) is known as the Laasonen method. This is unconditionally
stable.

Crank-Nicolson Method
An alternative scheme of (4.2.24) is to replace the diffusion term by an average
betweenn and n 4+ 1,

L I N e 2u”+1 + u”+1 Wl | —2ul 4+l
— 2 +
At 2

i i i+1 2 2
_ ., O(Ar, Ax
Ax? Ax? :| ( )

(4.2.25)
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This may be rewritten as

A+B=C+ D (4.2.26)
where
L 1
A= ui+2 —Llf B: M?+1 _u?-l_z C: 0t(”?ﬂl _2u7+uf+l)
Atj2 Atj2 (Ax)? ’
sl 2 )
(Ax)?

Note that A= C and B = D represent explicit and implicit scheme, respectively. This
scheme is known as the Crank-Nicolson method. It is seen that A = C is solved explic-
itly for the time step n + 1/2 and the result is substituted into B = D. The scheme is
unconditionally stable.

[3-Method
A general form of the finite difference equation for (4.2.1) may be written as

W — uf Q[B(u}”‘:ﬁ =2 ) (=B — 2 )

A (AxP (Ax)?

< ] (4.2.27)

This is known as the 3-method. For 1/2 < < 1, the method is unconditionally stable.
For B = 1/2, equation (4.2.27) reduces to the Crank-Nicolson scheme, whereas g =0
leads to the FTCS method.

A numerical example for the solution of a typical parabolic equation characterized
by Couette flow is presented in Section 4.7.2.

4.2.3 ALTERNATING DIRECTION IMPLICIT (ADl) SCHEMES

Let us now examine the solution of the two-dimensional diffusion equation,
Au Pu  ’u
——a|l—+-—=]=0 42.28
at a(aﬂ’*aﬁ) (42.28)

with the forward difference in time and the central difference in space (FTCS). We write
an explicit scheme in the form

+1 A n —
Wy —up _ N e Y n Wy — 2 . O(An AXL, AY)
At Ax? Ay?
(4.2.29)
It can be shown that the system is stable if
m+¢§% (4.2.30)
Here, diffusion numbers d, and d, are defined as
At
do=2L g = (4.2.31)

“ae 4Tap



4.2 PARABOLIC EQUATIONS

For simplicity, let d. = d, = d for Ax = Ay. This will give d < 1/4 for stability, which is
twice as restrictive, To av01d this restriction, consider an implicit scheme

”?JH oy ”ﬁllj - 2un+] + u:q+llj ”?;Lll - 2un+1 + ”7?11
SV R + (4.2.32)
At Ax2 Ay2
or
A+ da! ) — 2o+ 2dy + DT dettt 1 d T = - (4.2.33)

This leads to a pentadiagonal system.
Analternative is to use the alternating direction implicit scheme , by splitting (4.2.25)
into two equations:

d -

n+i n+ts 7
w; ;¢ —up Wopr; =20 "+ =20 Uy
_ i n / (4.2.34a)
At )2 Ax Ay
and
n+l n—l—% n+% o n+% n+% n+1 n+1 n-+1
W' i Wiy —2u " + Wy N Wi — 2+ (42.34b)
AL/2 Ax? Ayz

This scheme is unconditionally stable. These two equations can be written in a tridiag-
onal form as follows:
n

na L 1 1
——dlui:ﬁj + (U 2d) 7 = ™ = o)+ (1= 2 + doid?

implicit in x-direction explicit in y-direction
(4.2.35a)
—do T+ (1 4+ 2yt —d 't = d1u1+1 (= 2d)u o TR ;
unknown known
(4.2.35b)
where

1 1 oAt
di = S
L2 T AR
= 1 1 oAt
2T 2T 2Ay

Note that (4.2.35a) is implicit in the x-direction and explicit in the y-direction, known
as the x-sweep. The solution of (4.2.35a) provides the data for (4.2.35b) so that the
y-sweep can be carried out in which the solution is implicit in the y-direction and
explicit in the x-direction.

4.2.4 APPROXIMATE FACTORIZATION

The ADI formulation can be shown to be an approximate factorization of the Crank-
Nicolson scheme. To this end, let us write the Crank-Nicolson scheme for (4.2.25) in

73



74

SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS

the form
A+l n+1 n+1 .
" W[ Zu +u; 1 ul+]1 2u +u, 1
't —ul. o 2 2
i.] L) Ax Ax
5 ntl n+1 n+1 )
At 2 _{_ui’j+l 2u; + 1 1+u”+1 2u +u” |
Ay2 Ay2

O(AL2, AX?, Ay*) (4.2.36)
Introducing a compact notation,
8 = Wi j — 2+ Ui
B)Z,ui,j = U j41 — 2+ Ui

we may rewrite (4.2.36) as
1 iy 1 n
{1 - 2(d 82+ d 52):| + l:l + i(dx&zc + dy8§):| u; (4.2.37)

To compare (4.2.37) with the ADI formulation, we use (4.2.36) to rewrite the ADI
equations as

it~y _ (B, B
N =a( e + G (4.2.38a)
2
n+1 n+3 2 ”+z 2,1
Ui Atui.l _ (BxA;,z +6}A;; (42.38)
2
Rearranging (4.2.38a,b)
2 n+ |
( 2d D ) ‘= (1 + idYBY) ui; (4.2.39a)
(1 —~ 1d 82) Wl = (1 + ;d 82) Mk (4.2.39b)

g
and eliminating ul-_J;z between (4.2.39a) and (4.2.39b),

(1 B % dxsi) (1 B % p 82) . (1 45 82) (1 n %dyag) oy (4.2.40)
or
1 1 1 1
{1 — E(cz 8 +dyd) + - 7d 8282] mrl - [1 + 2(dxa;’— +d,8)) + dedyﬁiSi] u; |
(4.2.41)

We note that, compared to (4.2.37), the additional term in (4.2.41)

1d d 8282( rH—l u;_q )

if



4.2 PARABOLIC EQUATIONS

is smaller than the truncation error of (4.2.37). Thus, it is seen that the ADI formulation
is an approximate factorization of the Crank-Nicolson scheme.

4.2.5 FRACTIONAL STEP METHODS

An approximation of multidimensional problems similar to ADI or approximate
factorization schemes is also known as the method of fractional steps. This method
splits the multidimensional equations into a series of one-dimensional equations and
solves them sequentially. For example, consider a two-dimensional equation

du ’u 8%u
— =0 — +— 42.42
at “(axz + 8y2) (4242)
The Crank-Nicolson scheme for (4.2.36) can be written in two steps:

1

un+% —u. @ un+% ) n+% + unji X ut o —2ut 4 ul .
ij iy _ % i+1,j L) i—1,j + i+1,j i,f i—1,f (4243&)
Ar 2 Ax? Ax? o
2
n+1 n+s n+l A+1 n+1 n+s nts nt3
Mig —W;  a | M — 24 U n Wi — 20
At 2 Ay? Ay?
2
+ O(AL%, Ax?, AYY) (4.2.43b)

This scheme is unconditionally stable.

4.2.6 THREE DIMENSIONS

The ADI method can be extended to three-space dimensions for the time intervals
n.n+1/3,n+2/3 and n + 1. Consider the unsteady diffusion problem,

Uik Vi ok 2 Gk
Ax? Ay? AZ?

ik ik
At/3

. O(Ar, AX?, AY? AD)

ou Pu  u  9u
—=o| S5+-—+— 42.44
ot 0‘(axz + 9y2 * Bzz) ( )
The three-step FDM equations are written as
i’l-l-l 2 n+}
Wik =Wl [k N Sz n 82 (4.2.45a)
At/3 Ax? Ay? AZ? o
nt? sl gl nel nal
ui.j,;c - “r:j,i C 8%%./,13( n Siui.j,;( n Bgui,jjc (4.2.45b)
At/3 Ax? Ay? AZ? -
! n+3 (82u”+% Szu%% 82yl

(4.2.45¢c)
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76 SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS

This method is conditionally stable with (d, + dy, + d;) <3 /2 A more efficient method
may be derived using the Crank-Nicolson scheme

2, 2
”Z‘k.j.k—”?,jk:a 180u] 5 4+ 0ul | 8y11k+811]k
Ar 2 Ax? Ay? AZ?

u:'k.;;,k_u?,)’.k: 182 ljk+8}2( []k_Jr_}Bz z*jk+6y t]k+82 ijk
At 2 Ax? 2 Ay? AZ?

1
u?,-;,k_u?.j.k:u 182 1]k+8§ z/k+162 t1k+82 zjk_'_laz :1-]'—}(+82 i.jk

At 2 Ax? 2 Ay? 2 AZ?
(4.2.46)

In this scheme, the final solution u”ﬂ( is obtained in terms of the intermediate steps

,]kandu”k

4.2.7 DIRECT METHOD WITH TRIDIAGONAL MATRIX ALGORITHM

Consider the implicit FDM discretization for the transient heat conduction equation in

the form,
Tl _ Tn
VIR = (T -2t T (4.2.47)

This may be rewritten as

a; T + b, T o T =g, (4.2.48)
with
aAf 2aAt
i=¢i=——3, bi=l4+—F, ;=17 4.2.49
a;=c AL + A2 8i = ( )

If Dirichlet boundary conditions are applied to this problem, we obtain the following
tridiagonal form, known as tridiagonal matrix algorithm (TDMA) or Thomas algorithm
[Thomas, 1949|:

by ¢ O - - . o] _Tf+ﬂ g1 ]

a by ¢ 0O - - - T3 g2

0 a3 by ¢ O T g3
x ok %k - - * = | * (4.2.50)

* % % . >z< *

x ok CpnJ * *

Lo - - - - oan bud TR Lewid




4.3 HYPERBOLIC EQUATIONS

An upper triangular form of the tridiagonal matrix may be obtained as follows:
bi=b — ¢y i=23,.. NI
bi—1

& =8 — & g1 1=2,3,...NI
bi 1
ENI
Ty = 5M
V=
T =8 ;f M G=NI-1, NI-2,...1
i

It should be noted that Neumann boundary conditions can also be accommodated
into this algorithm with the tridiagonal form still maintained.

4.3 HYPERBOLIC EQUATIONS

Hyperbolic equations, in general, represent wave propagation. They are given by either
first order or second order differential equations, which may be approximated in either
explicit or implicit forms of finite difference equations. Various computational schemes
are examined below.

431 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

Euler’s Forward Time and Forward Space (FTFS) Approximations
Consider the first order wave equation (Euler equation) of the form
ou ou
o Yk T
The Euler’s forward time and forward space approximation of (4.3.1) is written in the
FTFS scheme as
n

u’.H'l —u’ ul —u
b SO e o S (4.3.2)
At Ax

It follows from (4.2.15) and (4.3.2) that the amplification factor assumes the form

0, a>0 (43.1)

g=1-C(e'®—1)=1—C(cosp—1) — ICsinp =1+ 2Csin’ % —ICsing  (4.3.3)

with C being the Courant number or CFL number [Courant, Friedrichs, and Lewy,
1967],
aAt
" Ax
and

2
gll=gg* = (1 +2C sin® 5) +C?sin® $=1+4C(1 — C)sin’ % > 1 (4.3.4)

where g* is the complex conjugate of g. Note that the criterion |g| < 1 for all values of
& can not be satisfied (|g| lies outside the unit circle for all values of &, Figure 4.3.1).
Therefore, the explicit Euler scheme with FTFS is unconditionally unstable.
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Im g Region of Instability
I f
Region of
1 Stability
g ' [y = — (Csin
o s °
‘ » Reg
1- ck
E={l-C)+Ccosd

Figure 4.3.1 Complex g plane for upwind scheme with unit circle repre-
senting the stability region.

Euler’s Forward Time and Central Space (FTCS) Approximations

In this method, Euler’s forward time and central space approximation of (4.3.1) is
used:

Wt — (ul g — )

4l =—g—T——"=  O(AL A 4.3.5
At ¢ 2Ax ’ (At, &%) ( )

The von Neumann analysis shows that this is also unconditionally unstable.

Euler’s Forward Time and Backward Space (FTBS) Approximations —

First Order Upwind Scheme

The Euler’s forward time and backward space approximations (also known as up-
wind method) is given by

Wt —uf W —u

S R S 2 W 6 YUV AN 4.3.6
A a—- ( x) (4.3.6)

The amplification factor takes the form

g=1-Cl—e *)=1-C(1 ~ cosd)—Isind

= 1—2Csin® % —ICsind (43.7)
or
172

g=&+1In, gl= [1 —4C(1 — C)sin’ %] (4.3.8a,b)
with

£ =1-2Csin’ % =(1-C)+Ccosd

n= —Csind
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A N=Im(g)

> &=Re(g)
1.0
T — F=Re
. 0.5 1.0 g (g)
(b
(1) Exact solution (2} Soluticn with (3) Solution with
dissipation error dispersion error
(©)

Figure 4.3.2 Dissipation and dispersion errors compared to exact solu-
tion. (a} Dissipation error (amplification factor medulus |g|). (b) Disper-
sion error (relative phase error, ®/®). (¢) Comparison of exact solution
with dissipation error and dispersion error for shock tube problem.

which represents the parametric equation of a unit circle centered on the real axis & at
(1 — C) with radius C (Figure 4.3.1), whereas the modulus of the amplification factor,
|g|, for various values of C are shown in Figure 4.3.2a.

In this complex plane of g, the stability condition (4.3.7) states that the curve repre-
senting g for all values of ¢ = kAx should remain within the unit circle. It is seen that
the scheme is stable for

0<g<l (43.9)

Hence, the scheme (4.3.6) is conditionally stable. Equation (4.3.9) is known as the
Courant-Friedrich-Lewy (CFL) condition.

We have so far discussed the amplification factor g which represents dissipation
error (Figure 4.3.2a). In numerical solutions of finite difference equations, we are also
concerned with dispersion (phase) error as shown in Figure 4.3.2b. The phase ® as
determined by the adopted numerical scheme is given by the arctangent of the ratio of
imaginary and real parts of g,

—Csind
I-C+ Ccosd

; Im(g) .

d = tan™ =
Re(g)

tan™! g: tan™! (4.3.10)
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The phase angle @ is
& =kaAt=Cd (4.3.11)
The dispersion error or relative phase error is defined as

_ @ tan”'[(=Csin¢)/(1 = C+ Ccos d)]
ey =5 = Co (4.3.12a)

or
1
g1 — 6(2c2 —3C+1) ¢’ (4.3.12b)

As shown in Figure 4.3.2b, the dispersion error is said to be “leading” for g4 > 1.

The dissipation error and dispersion error for ashock tube problem can be compared
to the exact solution. This is demonstrated in Figure 4.3.2¢c. Here, we must choose com-
putational schemes such that dissipation and dispersion errors are as small as possible.
To this end, we review the following well-known methods.

Lax Method
In this method, an average value of u! in the Euler’s FTCS is used:

1 C
a =S ) = 5 ) (*+313)

The von Neumann stability analysis shows that this scheme is stable for C <1.

Midpoint Leapfrog Method
Central differences for both time and spaces are used in this method:
Wit alu!  —ul_y)
i _ o\ ‘- O(ALL AX? 4.3.14
2At 2Ax ’ ( x) ( )

This scheme is stable for C < 1. It has a second order accuracy, but requires two sets
of initial values when the starter solution can provide only one set of initial data. This
may lead to two independent solutions which are inaccurate.

Lax-Wendroff Method
In this method, we utilize the finite difference equation derived from Taylor series,

u 1 9%u
u(x,t+ Aty =u(x, 1)+ —At+ TR 210(Ar) (4.3.15a)
or
n+1 ou 1 8 3
w'™ =u +—Az+—~—At + O(Ar) (4.3.15b)

ot 2! 912
Differentiating (4.3.1) with respect to time yields

3’u L0 (du ,3%u
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Substituting (4.3.1) and (4.3.16) into (4.3.15b) leads to

] AL? [ 37
uf“:uf—kAt(—a%) + T(dza—x’;) (4317)

Using central differencing of the second order for the spatial derivative, we obtain

u o —u 1 u'
l ( 2Ax * 2( )

—2u! +u’

(Ax)

= ) O(Ar%, Ax?)
(4.3.18)
This method is stable for C < 1.

4.3.2 [IMPLICIT SCHEMES

Implicit schemes for approximating (4.3.1) are unconditionally stable. Two representa-
uve implicit schemes are Euler’s FTCS method and the Crank-Nicolson method.

Euler’s FTCS Method
urtl —ut —q )
—— = 2Ax(u¢++11 —ultl), O(At, Ax?) (4.3.19)
or
Coii o C
Su - = Sl = (4.3.20)
Crank-Nicolson Method
1 n—+1 n n
”?H —ul alw], —uw Uiy — U 2 2
_— = ., O(At", A 4321
Al 2|7 2Ax 2Ax ( *) ( )
or
C C C
FUN T = = e (43.22)

Examples of the numerical solution procedure for a typical first order hyperbolic
equation using the explicit and implicit schemes are shown in Section 4.7.3.

43.3 MULTISTEP (SPLITTING, PREDICTOR-CORRECTOR) METHODS

Computational stability, convergence, and accuracy may be improved using multistep
iintermediate step between # and »n + 1) schemes, such as Richtmyer, Lax-Wendroff,
and McCormack methods. The two-step schemes for these methods are shown below.

Richtmyer Multistep Scheme
Step 1

"H‘% 1 n n
u; 5 (M,-+1 + uifl) - (”?H — u?_]) (4.3.23a)
At/2 2Ax o

81



82 SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS

Step 2
n+y At
ui_’t+1 _ u;l (ui+l — Lt[-_l )
it S S 4.3.23b
At “ 2Ax ( )

These equations can be rearranged in the form

Step 1
T = Sl ) = G ) (33242)
Step 2
Wt =l — %(ufj —u). O(AR, Ax) (4.3.24b)

This scheme is stable for C < 2.

Lax-Wendroff Multistep Scheme

Step 1
n+% — l(un _I_un) _ E(un _un) O(AIZ sz) (43253)
i+3 T o\l i ) i+1 i) 3 3.
Step 2
1 1
W= - C (6T —u"F), Ol ax) (4.3.25b)
i+3 =3

The stability condition is C < 1. Note that substitution of (4.3.25a) into (4.3.25b) re-
covers the original Lax-Wendroff equation (4.3.18). The same resuit is obtained with
(4.3.24a) and (4.3.24b).

MacCormack Multistep Scheme

. . . L n+4
Here we consider an intermediate step ¢} which is related to u; **:

o1
w = 5 + 1) (4.3.26)
Step 1
i u , —ul
ap —up_ — 1) (4.3.27a)
At Ax
Step 2
L ’H% we—u*
w o ) (4.3.27b)
At /)2 Ax

Substituting (4.3.26) into (4.3.27b) yields

Predictor
uf = i} — Cluf, — ) (43.280)
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Corrector
't = %[(uf’ +uf) — Cuf —ui_;)]. O(A”, Ax?) (4.3.28b)

with the stability criterion of C < 1.
The MacCormack multistep method is well suited for nonlinear problems. It be-
comes equivalent to the Lax-Wendroff method for linear problems.

4.3.4 NONLINEAR PROBLEMS

A classical nonlinear first order hyperbolic equation is the Euler’s equation

du _ du

= 4.3.29
o~ ox (4.329)
which in conservation form may be written as
3 d [ u?
m__2( (4.3.30a)
at ax \ 2
or
3 aF 2
Mo GimE= (% (4.3.30b)
at dx 2

The solution of (4.3.30b) may be obtained by several methods: Lax method, Lax-
Wendroff method, MacCormack method, and Beam-Warming implicit method. These
are described below.

Lax Method
In this method, the FTCS differencing scheme is used.
Wl FL - F 2
L=— . O(Ar A 4331
At 2Ax ( *) ( )
To maintain stability, we replace 1 by its average,
L, Y At
™ = E(uH—l +uf ) - SAX (£ — F4) (4.3.32)
or
1 At 2 2
1 n n " I
W= E(”m +u ) - AAx (1) = ()] (4.333)
The solution will be stable if
At
Ay Umax <1 (4.3.34)

Lax-Wendroff Method
In this method, the finite difference equation is derived from the Taylor series
expansion,

ou 1 9°u
n+l o= 2
w'’ =u + 5;’5[ + 5132 Ar” + (4.3.35)
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Using (4.3.30b) we have

Fu @ (IF\ 9 (dF
a2z~ a\ax/) ax\ at
where

oF _9F du _ dF (_g)

OF _ 9F du _ oF __OF
at due ot Ju ax

ox
with A being the Jacobian.

OF 8 [P
= — = — | — =U
ou du\ 2

Thus

82
G (LR W
or? dx ox ax ax
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(4.3.36)

(4.3.37)

(4.3.38)

(4.3.39)

Substituting (4.3.39) and (4.3.30b) into (4.3.35) yields

2
Wt =l + or Al + i AE Ar
! Cax ax\ " ox

or

Wttty oF d ( oF

i I - .
N 8x+8x ax

+ O(AL?)

) 5 + O(At?)

Approximating the spatial derivatives by central differencing of order 2,

upt -l _ P;’:li-l - F, 4 At A
At 2Ax 2Ax

The last term above is approximated as

IF

n n
7).~ (45)
ox H—% Jx i—%

aF\" aF\" n
0/icy . N W iy Tl T A

(4.3.40)

-, BT
1

Ax

1A”

_ s

o AN(FL, - B - m(/‘n + A ) (F

Ax
- FLy)

Ax
For A = u, we obtain

Al
1
Wit = ul — “2—5( ma— FL)

1 Af?

+ ZA—XZ[(“?H +ul)(Fry — FY) -

(4.3.41)

(uf 4wl ) (FF (4.3.42)

- 1)

This is second order accurate with the stability requirement,

At

Umax

Ax

<1
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MacCormack Method
In this method, the multilevel scheme is used as given by
* n At P [
uf =ul — E(Fiﬂ — F") (4.3.43a)
n 1 n * At * *
gt =3 = S = )| (43.430)

Because of the two-level splitting, the solution performs better than the Lax method
or the Lax-Wendroff method. One of the most widely used implicit schemes is the
Beam-Warming method, discussed below.

Beam-Warming Implicit Method
Let us consider the Taylor series expansion,

du 2u| Af?
dHAD=u(x, )+ —| At+—| — +0O(AF 4.3.44
(et + A =u(r O+ T At+T| S+ O(ar) (4344)
and
3 9? At?
w(x, ) =ulx, t+ A1) — 2 Al — S +0(ar) (4.3.45)
at X0+ At ar x4+ Ar 2
Subtracting (4.3.45) from (4.3.44)
a 0
2u(x, t + At) = 2u(x, t)+~Li At + o At
at X,t at X0+ At
Pul A2 u At?
—| = - o 1O.NS
ot? |, 2! 02 | iiar 2! +O(AL)
or
1| /0u\" [au\""! 1 /%u\" [02u\"t'| Ar?
ntl __,n — | 9% - At - —1) — [ — — t+0(ar
“ u’+2{(az)f+(az)i } T3 \az ; art . ZTI (A
where

32u\" 1 u\" 9 [3*u\"
—_— = — —{ — | Ar+0O(AF?
(3t2)i (afz)i+8f(af2)i +O(Ar)

Thus, we arrive at

1| /ou\" CITAN

n+l n 3

iyt o | — — At At 3.46
u; u’+2|:(at)i+(8t)i } + O(Ar7) (4.3.46)
For the model equation

au dF

- 4.3.47
ot 0x ( )

Using (4.3.46) in (4.3.47), we obtain
Wt w1 faFNY faF\"T!
e S I el - O(AL? 4.3.48
() ()] o s

This indicates that (4.3.48) leads to the second order accuracy.
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Recall that the nonlinear term F = u?/2 was applied at the known time level 7, and
the resulting FDE in explicit form was linear. The resulting FDE in implicit formulation
is nonlinear, and therefore a procedure is used to linearize the FDE. To this end, we
write a Taylor series for F (¢ + At) in the form

F(t+Ar) = F(t) + aa—FAt +0O(A?)

F
_F(t)+?3 g At + O(AL?)
or
IF (u" T —un
Frtl=pn — | At + O(AF? 4.3.4
S R LA (43.49)
Taking a partial derivative of (4.3.49) yields
aF\"T' /oF 3
9L el Al T — 4.3.5
(5:) (8) AW ] (43.50)

Combining (4.3.48) and (4.3.50) gives

w'tt—ut 1 [9F\" [F 3 nilon
=l () (), e )

Wl = ﬂ—%Az{z(aF) +%[A(M?“—uz’-’)]} (4.3.51)

or

ax

Using a second order central differencing for the terms with A on the right-hand side
of (4.3.51) and linearizing, we obtain

" | n 1
A — u'.i—lAt 2(F - F'y) +Azn+1 Wi — Ay
! 2 2Ax 2Ax
Al A" ul
. i+ 1 l+]2Ax i—1 I—l] (4.3.52)

Modifying (4.3.52) to a tridiagonal form

At n 1 n+1 At n+1
—EA _lu:’fl +u + +KA?+1ui:1
1 At At At
= f__‘—( z’n+1_an—1)+ . A?+Lu?+1_ A:?flul'»'71+D (4.3.53)
2 Ax 4Ax 4Ax

This scheme is second order accurate, unconditionally stable, but dispersion errors may
arise. To prevent this, a fourth order smoothing (damping) term is explicitly added:

w
D:_g(“?ﬂ Ay +6u] — Al |+l s),

with 0 < w < 1. Since the added damping term is of fourth order, it does not affect the
second order accuracy of the method.
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435 SECOND ORDER ONE-DIMENSIONAL WAVE EQUATIONS
Let us consider the second order one-dimensional wave equation,

Fu 5 0%u

— =g‘— 4.3.54

o ~ ¢ 9 (4.354)
Here we require two sets of initial conditions,

u(x, 0)= f(x)

d

S (x.0)=g(x)
and two sets of boundary conditions,

w(0, 1) = (1)

u(L, t) = ha(r)
We may use the midpoint leapfrog method for this problem,

W =20 — T + CP - 2uf ) (4.3.55)
If we choose du(x,0) = (), then

n+l (c—l
U; l; =0
2At

or

u’.'H'l = u'?_l
Thus, from (4.3.55), we obtain

1
T =l + ZCP o - 2ul 4 uf ) (4.3.56)

2

This is called the midpoint leapfrog method. An example problem for the second order
hyperbolic equation is demonstrated in Section 4.7.4.

4.4 BURGERS’ EQUATION

The Burgers’ equation is a special form of the momentum equation for irrotational,
incompressible flows in which pressure gradients are neglected. It is informative to
study this equation in the one-dimensional case before we launch upon full-scale CFD
problems.

Consider the Burgers’ equation written in various forms:

du Ju 0%u

du ou 9%u
du OF  du
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with F=1/2 u?, These equations are mixed hyperbolic, elliptic, and parabolic types.
If steady state is considered, then they become mixed hyperbolic and elliptic equa-
tions. Because of these special properties, various solution schemes have been tested
extensively for the Burgers’ equations. In what follows, we shall examine some of the
well-known numerical schemes.

441 EXPLICIT AND IMPLICIT SCHEMES

FTCS Explicit Scheme
In this scheme (FTCS), approximations of forward differences in time and central
differences in space are used:

1
oyl 24 (4.4.4)
At 2Ax Ax? -

U

where the truncation error is O(At, Ax?). The central difference for the convective
term tends to introduce significant damping,

FTBCS Explicit Scheme
This is the same as in FTCS except that backward differences are used for the
convective term,

uttl u! —ut u' o —2ut 4 ul
i i +a i i—1 = i+1 i i—1 (445)
At Ax Ax?

Here the first order approximation of the convective term may introduce an excessive
dissipation error. A compromise is to use higher order schemes such as (3.2.20) for the
second order. Using (3.2.1b), the third order scheme may be written as

n+1 n n n n
;' —u 11u; — 18u;_ + 152 — 2u; 3 ul o —2ul +ul,
- L = 4.4.6
At + a( 6Ax Y Ax? ( )
DuFort-Frankel Explicit Scheme
In this scheme, we use second order central differences for all derivatives,
Wit — ! n a”?ﬂ —u _ Wl — (“?_1 + “?H) +
2At 2Ax Ax? ’
At \?
O(Aﬂ, Ax?, (—) ) (4.4.7a)
Ax
or
1-2d C+2d C—-2d
ntl [ ! o= — |7 4.4.7b
i (1+2d)”* +(1+2d)”” (1+2d)”'+1 (4.4.70)

This is stable for C < 1.
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MacCormack Explicit Scheme
The two-siep or predictor-corrector scheme is written as

Step 1
* At At
uj = a-A_x(u?*'I — )+ vm( o~ 2u ) (4.4.8a)
Step 2
1 AL At
it = z[u + uy —aA—(u —u;_ 1)+vA 2(“t+1 2uf +u;“v1):| (4.4.8b)

This method is second order accurate with the stability requirement

1
A T AR

The following alternate form may be used:

Step 1
Aul = —a—g‘{;(ufﬂ —u') + Z—i;( w'o —2u +ul )
u; = u; + Auy (4.4.10a)
Step 2
Auf = —ai—(u —u )+ AAQ(MH-I 2ul +u )
Wt = E(uf' +uf + Auy) (4.4.10b)

MacCormack Implicit Scheme
One of the most frequently used implicit schemes is the MacCormack scheme.

Step 1
At
(1 -+ }\'A—x)s AM + )\ 8”14—1
u; =u; + du’ (4.4.11a)
Step 2

At
T+ ra— Jou"™! = A )\ Lout!
( * /_\.x) ui Ax il

utt = (u +uf + dumy (4.4.11b)

1 WA
A > max [5('“' + —'; - i), 0] (4.4.12)
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Note that equations (4.4.11a,b) form a tridiagonal system. The method is uncondition-
ally stable and second order accurate as long as the diffusion number, d = vAt /Ax®,is
bounded for the limiting process for which Af and Ax approach zero.

442 RUNGE-KUTTA METHOD

The transient nonlinear inviscid Burgers’ equation can be written as

8u+u8u_0
at ax

or
du oF u?
— 4+ — =0, F=-—
8t+8x ’ 2

For nonlinear transient problems, the Runge-Kutta method is known to be efficient
and has been used extensively. This method is briefly introduced below.
Let us consider an equation of the type

g—f = R(u) (4.4.13)

One of the popular approaches is the fourth order Runge-Kutta scheme written as

Step 2

U@ — 4 % R

Step 3
u® = u" + AtR?
Step 4

At
un-H —u" + F(Rn + ZR(U + 2R(2) + R(3)) (4414)

with
RO = R(m172, u(l))
R® — R(In+l/2’ u(z))
RO = R(r", u)

It is seen that higher order Runge-Kutta schemes require more steps for the evalu-
ation of R(u), resulting in additional computer time requirements.

An example of the solution procedure for the nonlinear Burgers’ equation is pre-
sented in Section 4.7.5.
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4.5 ALGEBRAIC EQUATION SOLVERS AND SOURCES OF ERRORS

4.5.1 SOLUTION METHODS

As aresult of FDM formulations, we obtain linear or nonlinear simultaneous algebraic
equations which must be solved. As we discussed in previous sections, either direct
methods or iterative methods may be used. Recall that, as direct methods, we examined
the Gaussian elimination in Section 4.1.3 and the Thomas algorithm (tridiagonal matrix
algorithm, TDMA) in Section 4.2.7. We also discussed the Runge-Kutta method in
Section 4.4.2 for the nonlinear time dependent equations.

In general, the number of arithmetic operations of a direct method can be very
high particularly for a large system of equations — much larger than the total number
of operations in an iterative method. Therefore, for fluid mechanics problems with
nonlinear sparse maltrices, it is more convenient, and often necessary, to work with
iterative methods.

There are many iterative methods other than those already introduced in the earlier
sections of this chapter. They include conjugate gradient method, generalized minimum
residual (GMRES) algorithm, and multigrid method. These methods are well docu-
mented in the literature. Among them are Varga [1962], Wachspress [1966], Dahlquist
and Bjork [1974], and Saad [1996].

Some of these advanced iterative methods will be presented in Parts Three and
Four. Conjugate gradient method, generalized minimum residual method, and multigrid
method are presented in Sections 10.3.1, 11.5.2, and 20.2, respectively. This is because of
the convenience of presentation as appropriate to the topical arrangements of this book.
Namely, the iterative solution methods are included in Part Three since the element-
by element method of FEM assembly requires special treatments of iterative solution
procedures, whereas the multigrid method is included in Part Four as it is related to other
topics including automatic grid generation. Newton-Raphson methods for nonlinear
algebraic equations are discussed in Section 11.5.1. Thus, the reader may find it useful
in visiting these sections as needed for his/her studies in FDM, Part Two.

4.5.2 EVALUATION OF SOURCES OF ERRORS

Recall that computational errors were discussed in terms of an amplification factor g
in Sections 4.2 and 4.3. For g < 1, the result is numerical diffusion (sometimes known
as numerical damping or numerical dissipation). On the other hand, for g > 1, the
result 1s numerical instability. Both of these cases lead to amplitude errors as shown in
Figure 4.5.1, which may be equivalent to the severely damped shock wave as depicted
in Figure 4.3.2¢(2).

If waves of different wavelengths travel in a medium. such a phenomenon is known
as dispersion. The dispersion arises from discrete spatial approximations and resultsin a
numerical error, called the numerical dispersion or phase error as shown in Figure 4.5.1b
or Figure 4.3.2¢(3). The dispersion error occurs in convection or wave equations, but
not in diffusion equations.

In numerical simulations, the so-called Gibb’s phenomenon occurs due to discretiza-
tion of the domain by a limited number of nodal points (Figure 4.5.1¢). They appear as
overshoots and undershoots near the steep gradients, similar to the diffusion errors.

9N
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A  {
1| i
u(x) u(x)
N
0 > 0 -
X X
(a) Dissipation error (b) Dispersion error

N\

1 N

u(x)

""WQ'U“
0 —
X

(¢) Gibb’s error
Figure 4.5.1 Various numerical errors.

Next we shall discuss these errors, which are associated with the diffusion transport
and convection transport equations.

Diffusive Transport
Parabolic equations represent the diffusion process associated with both spatial and
temporal variations. A general form of (4.2.2a) may be written in the form

afl—0)
Ax?

nt+l. ¢

T g ) 4
with0 <6 <1.

The method is fully explicit for 6 =0 and partially implicit for 0 <0 <1, with 9 =1
being fully implicit. The scheme with 6§ =1/2, known as the centered scheme, provides
reasonably stable and accurate solutions in general.

Using the definitions given in (4.2.12-4.2.15), the analytical solution of the diffusion
equation (4.2.1) may be written in the form

u(x,t) = u(t)e’™ (4.5.2)

(Wf =2l +u ) (45.1)

or
u(x, 1) = uge K1l (4.5.3)
Substituting (4.5.2) into (4.5.1) and using the definition of the amplification factor
(4.2.17), we obtain the amplification factor for various values of 6,
[1—d(1—8)(1—cos(kAx))]'/d
[1+d0(1 — cos(kAx))]/d

The amplification factors for explicit scheme (E), centered scheme (C), and fully
implicit scheme (I) for 6 = 0,6 = 1/2,0 = 1 are shown in Figure 4.5.2. Itis seen that the

lglo = (4.5.4)
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explicit and centered schemes behave irregularly for high values of diffusion number,
whereas the fully implicit scheme is stable.

For multidimensional problems, the implicit method requires the inversion of large
and sparse matrix equations and is computationally expensive. Although the solution
may be stable with large time steps, numerical diffusion becomes excessive, resulting in
inaccuracy. On the other hand, the explicit scheme is less expensive, but small time steps
are necessary in order to achieve accuracy. The amplitude errors are significant in the
diffusive transport equations, whereas dispersion errors and Gibb’s errors dominate in
the convective transport equations.

Convective Transport
Hyperbolic equations represent convection and wave phenomena. A typical con-
vection equation may be written in the finite difference form

[ ) (40— )
S AN S et 4 P ) S el V4 455
At a9 2Ax +¢ ) 2Ax ( )
or in terms of the Courant number C = aAt/Ax.
n 0C n n (1 - B)C n n
T 7(”:':11 — ) =uf - —“Z_(Mi+1 — ) (4.5.6)

Note that the values of u at n + 1 for 8 > 0 (implicit scheme) are calculated in terms
of the values at n, but are involved in three different spatial locations, resulting in a

|
c
|
0.5 E 05
c
E
0 T 0 T
0 157 314 0 157 3.14
(a) d=0.5 (b) d=1
1
0.5 -
] I
C
E
0 x
0 157 314
{c) d=1.25

Figure 45.2 Amplification factors for diffusion equation, E = explicit, C = cen-
tered, [ = fully implicit.
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tridiagonal matrix. Although the explicit scheme (8 = 0) reduces to a simple algebraic
equation, computational difficulties in stability and accuracy are likely to occur.

In view of (4.2.15), (4.3.3), and (4.5.6), the amplification factors for 8 = 0,0 = 1/2,
and 8 = 1 can be written in the form, respectively,

Iglz = |1 — ICsin(kAx)| (4.5.7)
1-— I% sin(kAx)
1+ 15 sin{kAx)
8li = ! (4.5.9)
Bl = 1+ ICsin(kAx) o

Similarly, using (4.3.18), the amplification factor for the Lax-Wendroff scheme 1s derived
in the form,

lgl=11—C*(1 — cos(kAx)) — ICsin(kAx)| (4.5.10)

These results (Figure 4.5.3) show that the explicit scheme performs poorly in the
region kAx = /2, whereas the Lax-Wendroff scheme behaves quite satisfactorily in the
high wave number region.

Asseen in other schemes studied in Section 3, computational errors including ampli-
tude errors, dispersion errors, and Gibb’s errors must be carefully examined, particularly
in multidimensional problems. Some of the schemes used in one-dimensional problems
may be extended to multidimensional problems, although the conclusions reached for
one-dimensional problems discussed here are by no means universally applicable. In
order to deal with more complicated geometries and physical aspects in CFD, many
other schemes and methodologies will be explored in Chapters 5 and 6 (incompressible
flows and compressible flows, respectively) and in FEM, Part Three.

4.6 COORDINATE TRANSFORMATION FOR ARBITRARY GEOMETRIES

Finite difference formulas developed in Chapter 3 and finite difference solution schemes
discussed so far are applicable only to rectangular cartesian coordinates. If grids are ori-
ented in arbitrary directions of 2-D or 3-D geometries, then it is necessary to transform
the arbitrary physical domain into the computational domain of a rectangular cartesian
system so that finite difference equations can be written in orthogonal directions. Such
transformations are possible as long as the entire grid system is structured.

4.6.1 DETERMINATION OF JACOBIANS AND TRANSFORMED EQUATIONS

Let us consider for simplicity a two-dimensional coordinate system of the physical
domain (x, y), and the computational domain (§ and m) as shown in Figure 4.6.1. We
begin with spatial derivatives of any variable with respect to £ and m as

Ja 88_x+88y
8E  dx 0E Dy ¢
a d dx d dy

am " Bxom oy om
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&1, lg],. = L+ ICsin(ka)

(a) Explicit (6=0)

1.1

-7 %sin(kAx}

Ig|(‘ |g |C = C
1+17 > sin(kAx)
1
(b) Centered (6=1/2)
1.1
el 8l = e
I 1+ ICsin(kAx)
0.9
(c) Fully implicit (6=1)
L1
e, g, = \1 —C*(1-cos(kAx)) - [Csin(kAx)‘
0.9 I
2 s
(d) Lax-Wendroff (6 = kAx)
Figure 4.5.3 Amplification factors.
y A
na
> »
x 3
(a) (b)

Figure 4.6.1 Transformation from curvilinear grid system into rectangu-
lar grid system. (a) Original curvilinear grid. (b) Transformed cartesian
grid.
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or
d dx dy d 0
9 | | 9¢ 0¢& ox | dx
g | =lax ay||a =V (4.6.1)
dn om  dn Lay dy
where [ /] is the Jacobian matrix
dx dy
_ | 9§ 9%
1= 1as oy
an  am
Thus
ad ay  —dy d
ax | _ 1| an  9E || 0%
3 |7 | —9x  ax ] (4.62)
ay am 1S an

Second derivatives of (4.6.2) are given by

A 0 L N

ax> — |J1Z \om/ 982 “9moE agam ' \o&) o
dy 3%y Ay d’y\ a dy 3%y 3y d’y\ 2
(%aean_iﬁ)i (&aean'%é‘?)a—ﬁ]

1 [/ay\*0lJ| & dyayalJ| 8 dyadyolJ| d ay\ alJ| a]
FARRN:LY o€/ o9n 9an
(4.6.3a)

¢ _ 1 [(ax\"8 dxdx ¥ L ? g2
9y2 [T \8n/ 8&2 Tamagdgam  \og/)

N ax a%x  dx 9ix\ o N ax 3°x  0x 0%x 8}
InoEdn & ov? J 0¢ 0€ 9E0m  In0E? ) an

1 |:(8x)28!]| d dxoxolJ| @ oxodxo|lJ| d (ax)zalfli]

9E 9E  OmIE IE dm  OE am 9 of

P\ o/ aE 38 Bmog 9 om 9Eom am 9 \9E/) am om
(4.6.3b)
where
olJ] 8 (dxdy ayax
. DEN\BEAm 9

?xdy dx d*y  d*yax 9y 3%«

987 dm ' 9Eokom  6E29m  O€ 9Eom
vl _ i(ax ay 8y8x)
dn  dn\dEdm g dn
’x dy  0x %y 3’y dx 3y dx

3Eamam | 9E 9P GmdE om  GE o7
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Consider the governing equations in the form

U au U 37U  8°U
v( ) —f=0 (4.6.4)

3 T TV TG T

with

=[] e[

Applying (4.6.3) to (4.6.4) yields

oU _9U _aU |:1(82U 2baZU dZU) aU U

Vo TR\ e T PaEan o ) TP TG

EREEANT Tl

2 2 2 2 2 2
maax_Zbax Bx +8x 8_1_2b8y+68_y
0&? B&Bn 81]2 0E? d&an TP

y

M
a 82 82 82 2 2 82
—(a—f—Zb ad +c—x)—8—x(aa—l—2bay +c —y)}

1
1= TP e \“oe2 ~ Togan " “aw)  ae\"982  ogom ' Comp
ax\? ay :
o= (5) (o)
_ dx 0x 8y 8y
T 9E am | O am

ax\? dy
€= (55) * (E)
4.6.2 APPLICATION OF NEUMANN BOUNDARY CONDITIONS

Neumann boundary conditions are applied in the transformed coordinates based on the
same procedure described above. For example, let us consider the gradient of U with
respect to m.

dU  dUdx 9Udy

4.6.6
81] ax 81] * dy an ( )

ou 4 dJ
Using a first order backward difference for e T and 2 we have

n o an’
U —U jx _ @H,]‘ S n @yi.j — Vij-1
Am dx Am dy Am
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or

aU dU
—Ax + —Ay (4.6.7)

Uij=U -1+ o 7y

4.6.3 SOLUTION BY MacCORMACK METHOD

The transformed governing equations (4.6.5) may be solved using the MacCormack
method as follows:

Predictor

oU ouU
U7 =Ul’?_j+AtI (u— +v—)

1 a%u BZU a%u ou au1”
At a— —2b—— — — . 4.6.8
M [ﬂ( 2ez ~ aEm ' 8”02) PaE 7% ],-,,-+ ’*’} (4.682)

Corrector

1 At U _0U
n+l __ *
U’ _E(Ui‘j_‘_U?i)_'_?[ ( B )}

v_At[l(azU baQU 82U) aU BU] Al e
2y

il 9 L 2
NN A T A ol A TR ™) R

(4.6.8b)

It is now clear that the solution of the governing equation (4.6.4) is replaced by the
solution of transformed equation (4.6.5) in which finite difference formulas of Chapter 3
can be used using the grid system of Figure 4.6.1b. This cumbersome procedure can be
avoided if finite volume methods (Chapter 7) or finite element methods (Part Three)
are used.

4.7 EXAMPLE PROBLEMS

The purpose of this chapter was to list or summarize the existing numerical schemes
for later references in forthcoming chapters. Thus, examples shown in this section are
limited to simple problems for the benefit of the uninitiated reader.

4.7.1 ELLIPTIC EQUATION (HEAT CONDUCTION)

In this example, we demonstrate the solution of steady state heat conduction,

2T 3°T

axz Ty Y

with the geometry and boundary conditions as shown in Figure 4.7.1.1a. The anaiytical
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T=0
I 3
H=1| T=0 40 x 20 mesh T=0
L 4
T'=200°R
L=2
(a)
Contours of Constant Temperature for a Rectangular Plate
1.0 LI Al T T _l T T T T I T T T T E T T (R)
| e p—— 1 1 ‘emperature
- /,__—-2—————2 \‘ F 87
0.8 |- T, 1 e s
T D 162
E 0 1 ¢ 130
o /,_/-——4-———\55 1 8 3
§ 0.6 - e A 125,
© L -—— 4 1 9 112,
& ’ 4 4 \1 8 100
o o4 4 7 875
> 7 9/”'—\' 8 750
I /f—‘\ 5 625
4 300
0.2 B\a\\ 3 ! 200
E —E 2 250
0.0 M L 4 | L fcﬁ r ! 12.5
0.0 05 1.0 1.5 2.0
X Distance (ft)
(b)

Figure 4.7.1.1 Heat conduction problem. (a) Geometry and discretization (40 x 20 mesh).
(b) Computed results.

solution is given by

. nm(H—y)
N sinh ———=2
1—(-1)" I . nmX
T=20012 E - A sin 7
n=1 sinh 7

Required: Solve using the point successive over-relaxation (PSOR).

Solution: The results for 40 x 20 mesh are shown in Figure 4.7.1.1b. The optimum
relaxation parameter in this case is w =1.7. The average error is approximately 0.5%
as compared with the analytical solution (N = 100).

Remarks: For thissimple problem, all methods introduced in this section will provide
similar results.



100

y(m)

y(m)

SOLUTION METHODS OF FINITE DIFFERENCE EQUATIONS

A
y Top Plate Fixed
H =401
— Bottom Plate
(a)

3 Fluid
Motion

At=0.002 sec,w»=0.000217

H——x 120.2

At=0.00232 sec,v=0.000217

>‘—7'< t=0.2
—=< 1=0.4
A 1=0.6
B—H81=1.0

At=0.00232 sec,v=0.000217

H =02
9 L=0.4
A—A1=0.8
B—8t=1.0

G t=00.4
A—A t=0.8
G—811=1.0
0.02 £ o.02F
=
0.00 0.00
0 10 20 30 40 0
u{m/sec)
(a)
At=0.002 sec,v=0.000217
0.04 K ' ' X (=0.2 0.04 K
—oL=0.4
SH—A =0.6
B—8 (=10
0.02f & .02
=
0.00 0.00
0 10 20 30 40 G
u(m/sec)
(b)

Figure 4.7.2.1

20 30 40

u{m/sec)

Couette flow. (a~-top) Couette flow geometry. (a—bottom) Velocity profiles for FTCS explicit

method (40 elements). (b) Velocity profiles for Crank-Nicolson method (40 elements).

4.7.2 PARABOLIC EQUATION (COUETTE FLOW)

Consider the Couette flow characterized by the parabolic equation,

9 92
“ Y20, v=0.000217m%s

o oy
with the geometry given in Figure 4.7.2.1a and
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u=uy=40mys, y=0

Initial conditions at t = 0 {u =0, O<y<h

u=u,=40mys, y=0

Boundary conditions at ¢ > ( {u —0. y=h

Required: Solve by FTCS and Crank-Nicolson methods with the initial and bound-
ary conditions as shown below.

Solution: The results are shown in Figure 4.7.2.1b. As expected, FITCS for
d = 5034 > 1/2 is unstable whereas Crank-Nicolson gives stable results regardless of
diffusion number ranges.

4.7.3 HYPERBOLIC EQUATION (FIRST ORDER WAVE EQUATION)

The governing equation is given by

du 9% o 4=300"
at dx s
with
u(x)y=0 0<x<50

Initial conditions at t =0 1(x) = 100sin (x —50) 50<x <110
60 T

u(x)=0 110 < x <300
u(x)=0 x=0
Boundary conditions at ¢ > 0
u(x)=0 x=1L

Explicit Schemes

Required: Solve by explicit schemes, (a) first order upwind scheme (FTBS),
(b) Lax-Wendroff scheme, and FTCS implicit scheme.

Ax =5, At = 0.01666 (C =0.9996) (CFL number)

Ax =5, Ar = 0.015 (C=09)

Ax =5 At = (.0075 (C =045)

Solution: The results are as shown in Figure 4.7.3.1. Note that the exact solution is

obtained for both methods for C = 1. However, as C decreases, FTBS becomes dissi-
pative, whereas the Lax-Wendroff scheme (second order accurate) becomes dispersive.

Implicit Schemes
Required: Solve by implicit scheme (FTCS).

Solution: The results are shown in Figure 4.7.3.2. This scheme is very dissipative at
high C values. Although unconditionally stable, the results are poor, particularly with
large time steps (large Courant number).
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100
80| .
—a— ¢=0.9996
—a— c=0.9
—— €=0.45
Eso | —¢— Exact |
E Time=0.45 sac
2
S a0l -
20 |- -
0 + : :
0 50 100 150 300
X-Distance (m) . )
@) Figure 4.7.3.1 Solutions of first order wave
equation by FIBS and Lax-Wendroff
100 schemes, 60 nodes. (a) First order upwind
A B A |
(FTBS). (b) Lax-Wendroff scheme.
80 |- |
—A— ©=0.9996
—F— cx(.9
. —5— c=0.45
J 60 —o— Exact ‘_
E Time=0.45 sec
=
g
Qa0 <
20 |- .
0 R . Y
0 50 100 150 200 250 300
X-Distance (m})
(b)
100 ————r——————T—T ,
L -4
80 |- “1
—A— £=0.9996
| —53— ¢=0.9 4
. —3— ¢=0.45
w —©— Exact i
g 60 r— .
= Time=0.45 sec
>
-6 -
o
S0t
20
0 o898 3 8800005 8888588089 TR é‘;”:.;.:.. DSOGO ::"—_
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X-Distance (m)

Figure 4.7.3.2 Solution of first order wave equation by FTCS implicit scheme.



4.7 EXAMPLE PROBLEMS 103

4,74 HYPERBOLIC EQUATION (SECOND ORDER WAVE EQUATION)
The second order wave equation is considered in this example.
oz ~ % ax?

Two sets of initial conditions are required:

Initial conditions
u(x) =0 0<x <100
(ayatr =0 {u(x)=100sin [Tr(x%ol()())} 100 < x <220
u(x) =0 220 < x < 300
du(x)
b)atr =0 =0
(b)a Y
Boundary conditions
u(x) =0 x=0

u(x)=0 x=1L

Required: Solve by the midpoint leapfrog scheme.

Solution: The results (Figure 4.7.4.1) are obtained at f = (.28 seconds. The best
solution occurs for C = 1. Note that dispersion errors occur for C less than 1.

50 -

40

30 +

20 |-

Velocity (m/s}

—a&— ¢=0.9996
—=—c¢=0.9

04 —— ¢=0.45
Time=0.28 sec 1
ol 0 .
)} 50 100 180 200 250 300

X-Distance (m)

Fgure 4.7.41 Solution of second order wave equation by midpoint leapfrog
scheme, 60 nodes.
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4.7.5 NONLINEAR WAVE EQUATION

Consider the nonlinear wave equation in the form

au ou
Zhu— =0
ot dx
Qr
du oF . 1
— 4+ — =0 with F= =u?
at ax 2
1.5¢ ' ' T 1.5] T
@ Lo 1 % 1o} 1
E [ t=0.0 sec ——— < t=0.0 sec ——
= [1=0.5 sec —— E t=0.5 sec ——
> 0.5rt=1.0 sec —— 1 & 0.5H=1.0 sec — ]
'g tt=1.5 sec — ‘© t=1.5 sec —
o [1=2.0 sec — \ ) -% t=2.0 sec —
= 0.0rdt/dx=0.5 = 0.0rdt/dx=1.0
-0.5 A . . -0.5 . —
0 1 2 3 4 ] 1 2 3 4
x-Distance (m) x-Distance (m)
(a)
1.5¢ ' ‘ 1.5¢ ’ ' ' T
& 1o TN 1 @ 1of -4 ]
E [ t=0.0 sec — >~ [1=0.0 sec ——
= [1=0.5 sec —— _E, t=0.5 sec ——
> 0.5rt=1.0 sec — 1 = 0.5t=1.0 sec —-——rv E
’g t=1.5 sec —— 3] t=1.5 sec —
o 1=2.0 se¢ —— % t=2.0 sec ——
= 0.0rdt/dx=0.5 = 0.0[dt/dx=1.0
-0.5 . . . -0.5
0 1 2 3 4 0 1 2 3 4
x-Distance (m) x-Distance {m)
(b)
15} ' ' ' 1.5f ' '
> nof A 1 % 1o} .
E [ t=0.0 sec — E [1=0.0 sec —
- rt=0.5 sec —— = [1=0.5 sec ——
i) 0.6t=1.0 sec —— - > 0.5rt=1.0 sec — 1
"'g t=1.5 see — 3] tt=1.5 sec ——
= t=2.0 sec —— < [1=2.0 sec —
> 0.0 ‘dt/dx:O‘ﬁ - 0.0 ‘dt/dx:l.O
-0.5 R , . -0.5
0 1 2 3 4 0 1 2 3 4
x—Distance (m) x-Distance (m)
(c)

Figure 4.7.51 Solution of nonlinear wave equation by various methods. (a) Lax method (80 elements).
(b) Lax-Wendroff method (80 elements). (¢) MacCormack method (80 elements).
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The following initial and boundary conditions are to be used:
u(x,0)=1 0<x<?2
u(x,0)=0 2=<x=<4

Required: Solve by (a) Laxmethod, (b) Lax-Wendroff method, and {¢) MacCormack
method.

Solution: The results are obtained with At/Ax =1 and At/Ax = 0.5. Referring to
Figure 4.7.5.1, the Lax method is dissipative, whereas the Lax-Wendroff method is
dispersive. This trend is worse when the Courant number is smaller. The MacCormack
method gives better results particularly with Courant number near 1. It is still dispersive
at lower Courant number, but better than the Lax-Wendroff scheme.

4.8 SUMMARY

In this chapter, FDM schemes for typical elliptic, parabolic, and hyperbolic partial
differential equations and Burgers’ equation have been presented. These equations
do not represent complete fluid dynamics phenomena, but the computational schemes
described herein do constitute the basis for computations involved in incompressible
and compressible flows. Concepts of explicit and implicit schemes with von Neumann
stability analyses are expected to play significant roles in all aspects of computational
methods in fluid dynamics and heat transfer.

Although most of the computational schemes for FDM presented in this chapter are
in terms of one-dimensional applications, their extensions to multidimensions including
noncartesian orientations of physical domain can be accomplished by transformation
into the cartesian computational domain.

In practical applications, most physical phenomena in fluid mechanics and heat
transter are multidimensional. Thus, significant modifications and improvements over
the simple approaches introduced in this chapter are required in dealing with incom-
pressible and compressible flows, which are the subjects of the subsequent chapters.
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CHAPTER FIVE

Incompressible Viscous Flows via Finite
Difference Methods

5.1 GENERAL

The basic concepts in FDM and applications to simple partial differential equations
have been presented in the previous chapters. This chapter will focus on incompressible
viscous flows in which the physical property of the fluid, incompressibility, requires
substantial modifications of computational schemes discussed in Chapter 4.

In general, a flow becomes incompressible for low speeds, that is, M < 0.3 for air, and
compressible for higher speeds, that is, M > 0.3, although the effect of compressibility
may appear at the Mach number as low as 0.1, depending on pressure and density
changes relative to the local speed of sound. Computational schemes are then dictated
by various physical conditions: viscosity, incompressibility, and compressibility of the
flow. The so-called pressure-based formulation is used for incompressible flows to keep
the pressure field from osciliating, which may arise due to difficulties in preserving
the conservation of mass or incompressibility condition as the sound speed becomes
so much higher than convection velocity components. The pressure-based formulation
for incompressible flows uses the primitive variables (p, v;, T), whereas the density-
based formulation applicable for compressible flows utilizes the conservation variables
(p, pvi. pE).

Incompressible viscous flows are usually computed by means of the continuity and
momentum equations. If temperature changes in natural and/or forced convection heat
transfer are considered, then the energy equation is also added. For simplicity in demon-
strating the computational strategies for incompressible flows in general, we shall con-
sider only the isothermal case in this chapter. In Chapter 6, it will be shown that compu-
tational schemes for incompressible flows can also be developed from preconditioning
processes of the density-based formulation which is originally intended for compress-
ible flows. This process leads to implementations of an algorithm applicable for both
compressible and incompressible flows [Merkle et al., 1998].

In dealing with incompressible flows, there are two approaches: primitive variable
methods and vortex methods. The primitive variable approach includes the artificial
compressibility method (ACM) [Chorin, 1967], and the pressure correction methods
(PCM) including the marker and cell (MAC) method [Harlow and Welch, 1965], the
semi-implicit method for pressure linked equations (SIMPLE) [Patankar and Spalding.
1972, and the pressure implicit with splitting of operators (PISO) [Issa, 1985]. The
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main difficulty in incompressible flows is the accurate solution for pressure. Thus, the
purpose of the vortex methods is to remove the pressure terms from the momentum
cquations, which can be achieved by solving the vorticity transport equation(s) (one
scalar equation for 2-D and three vector component equations for 3-D).

In view of the fact that the transition between incompressible and compressible
flows involves a complex process of interactions between inviscid and viscous prop-
erties, it is reasonable to seek a unified approach in which both incompressible and
compressible flows can be accommodated. This subject will be discussed in Section 6.4,
Preconditioning Process for Compressible Flows and Viscous Flows, and in Section 6.5
on the flowfield-dependent variation (FDV) methods. For this reason, treatments of
incompressible flows in this chapter will be brief.

5.2 ARTIFICIAL COMPRESSIBILITY METHOD

The governing equations for incompressible viscous flows, known as the incompressible
Navier-Stokes system of equations, are written in nondimensionalized form as

Continuity

vii=0 (5.2.1)
Momentum

d Vi 1

T +V,jVi=—p;+ Evi‘jj (5.2.2)

where the following nondimensional quantities are used:

V! X * t'v
Viz—l xi:—l, p= p2 , [ = LOO’ Re =
PV v

with asterisks implying the physical variable and Re being the Reynolds number.

In the artificial compressibility method ( ACM), the continuity equation is modified
to include an artificial compressibility term which vanishes when the steady state is
reached [Chorin, 1967]:

ap

5 +vii =10 (523)
where p is an artificial density, equated to the product of artificial compressibility factor
B and pressure,

p=B"'p (52.4)

Here 3—‘; — 0 at the steady state and 7 is a fictitious time.
With these definitions and combining (5.2.1-5.2.4), we may write the incompressible

Navier-Stokes system of equations in the form

AW L OW 18 (W
ot lax,- " Re ax; Y 8x,~

(5.2.5)
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p 8Di BV[' 0
W= A = —. D; = : B;; =
|:V,:|’ W [ViVj + Psijjl ! [ Oij

0 B 0 0 00 B 0
A 31)112u00] A_@z__'OVuO
YEOW 10 v ou 0 2T W |1 0 2v O
10 w 0 u 00 w v
0 0 0 B
A3=@§=Ow0 u
aW 0 0 w v
1 0 0 2w

Let us now investigate the eigenvalues of A;,
A = NI =0
where the eigenvalues of A; (i = 1, 2, 3) are, respeciively,

(i, u, u + Vi +B), (v,v,vE+ V2 +B), (w, w, w £ Vw2 +p) (5.2.6)

in which /B is the artificial speed of sound (often called the artificial compressibility
factor) with B being chosen adequately (between 0.1 and 10 as suggested by Kwak
et al. [1986]). The idea is to maintain low enough B (close to the convective velocity)
to overcome stiffness associated with a disparity in the magnitudes of the eigenvalues,
but high enough such that pressure waves (moving with infinite speed at incompress-
ible limit) be allowed to travel far enough to balance viscous effects. As a result, the
conservation of mass or incompressibility condition is assured by means of an artificial
compressibility. In this process, it is possible to obtain the correct pressure distributions.
The solution of (5.2.5) is usually obtained by the Crank-Nicolson method.

From the point of view of linear algebra, the finite difference algebraic equations
resulting from (5.2.5) are well conditioned (with a proper choice of B), as compared to
the original equations (5.2.1) and (5.2.2). This is due to the well-conditioned eigenvalues
given by (5.2.6). All other solution schemes for incompressible flows without using the
artificial compressibility must employ special approaches as discussed below.

5.3 PRESSURE CORRECTION METHODS

5.3.1 SEMI-IMPLICIT METHOD FOR PRESSURE-LINKED EQUATIONS (SIMPLE)

It is well known that, if the finite difference equation is written in control volume grids
(Section 1.4) for continuity v;; =0, this will lead to nonphysical, checkerboard-type
oscillations of velocity in each one-dimensional direction (same values repeated at every
other node, assuming that the velocity distribution between the adjacent nodes is linear).
As a consequence, the mass is not conserved, thus causing the pressure to undergo
similar oscillations. This is particularly true when pressure becomes constant (p; = 0)
for the same reason as v; ; = 0. These difficulties can be shown to be remedied by using
staggered grids [velocity nodes staggered with respect to pressure nodes (Figure 5.3.1)]
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Control Volume
for v

@ Pressure

Control Volume

for u
O  u component

[] v component
Figure 5.3.1 Computational domain for staggered grid.

in the algorithm known as SIMPLE [Patankar and Spalding, 1972]. In this method, the
predictor-corrector procedure with successive pressure correction steps is used:

where p is the actual pressure, P is the estimated pressure, and p’ is the pressure
correction. Likewise, the actual velocity components in two-dimensions are

|
=

+u’ (5.3.2a)
+v' (5.3.2b)

I
<

U
Vv

The pressure corrections are related to the velocity corrections by approximate
momentum equations,

au’ ap’
== 5.3.
P o (5.3.32)
v ap
oY % (5.3.3b)
ot dy
or
At dp'
u = ___[3_ (5343)
p 0x
At dp’
v =_2L%P (5.3.4b)
p dy

Combining (5.3.2) and (5.3.4) and substituting the result into the continuity equation,
we obtain the so-called pressure-correction Poisson equation of an elliptic form,

) p (ovi 3V p av .
o _P (Vi _ P oV ~1.2 535
P At (axi Bx,-) Af 0x; (l ) ( )

where we set - g—‘é = 0 to enforce the mass conservation at the current iteration step.
An iterative procedure is used to obtain a solution as follows [Raithby and Schneider,

1979].
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(a) Guess the pressure p at each grid point.

(b) Solve the momentum equation to find V; at the staggered grid (i +1/2,
i—1/2,j+1/2, j —1/2), discretized in control volumes and control surfaces
(Section 1.4) as shown in Figure 5.3.1.

(c) Solve the pressure correction equation (5.3.5) to find p" at (i, j), (i, j — 1),
(i,j+ 1), —1,7),(G+1,7). Since the corner grid points are avoided, the
scheme is “semi-implicit,” not fully implicit, as shown in Figure 5.3.1.

(d) Correct the pressure and velocity using (2.2.9b), (5.3.2), and (5.3.4).

p=7+p
- M Al ¢ ) (1)

U=u-— 2 Ax (pl+1 j pl 1 1) - ? (AH,%J’ - 4_%’]) (536)
_g_ At o) @

T 2pAy(p‘ 7Py 1)—_(‘41 j+3 _Ai.jf%)

where

/ ! ! 1 s
AY = (pvivi) i — M(Vl,kk + ng.kl) (k=1,2)

1,
AY = (PV/kaz),k - M(V,z,kk + gvk.kz) (k=1.2)

with p being the dynamic viscosity.

(e) Replace the previous intermediate values of pressure and velocity (p, v;) with
the new corrector values (p, v;) and return to (b).

(f) Repeat Steps (b) through (¢) until convergence.

Often the convergence of the above process is not satisfactory because of the ten-
dency for overestimation of p’. A remedy to this difficulty may be found by the use of
under-relaxation parameter a,

p=p+op (5.3.7)

However, in many cases a proper choice of a is not easy (« = 0.8 is often used). Thus, a
further corrective measure is to use SIMPLER (SIMPLE revised) in which a complete
Poisson equation is used for pressure corrections.

Vip = —p(VijV)). (5.3.8a)
or
du d av d
Vip=op( v OVOH (5.3.8b)
dx dy  dx 0y

Here u and v will be replaced by (5.3.2) and subsequently (5.3.5) replaced by (5.3.8).

Instead of using the time-dependent formulation described above, it is conven-
ient to use a steady state approach with finite volume discretizations as shown in
Figure 5.3.2.

awm=a(2ym%rug+a—amﬁg (5.3.9)
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W e ® L
®
S
Control volume for p Control volume for u
N
W e ®F

Control volume for v

Figure 5.3.2 Computational domain for steady-state problems.

where ¢ is any conservation variable and « is the under-relaxation parameter with the
subscripts p and nb denoting the node under consideration and neighbor contributions,
respectively.

Convergence of (5.3.9) may be improved using SIMPLEC proposed by Van
Doormaal and Raithby [1984] in which more “consistent” approximation of (5.3.9) is
implemented:

(@ =Y aw) . = A, - p) (53.10)
with
Ue =, + dp(p, — p) (5.3.11)
g, = Lt b A (5.3.12)
¢ a, Qe — 3 b

Examples of computations reported by Van Doormaal and Raithby [1984] show that
SIMPLEC is most effective, followed by SIMPLER and SIMPLE.
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5.3.2 PRESSURE IMPLICIT WITH SPLITTING OF OPERATORS

We note that the SIMPLE method requires an iterative procedure. To obtain solutions
without iterations, and with large time steps and less computing effort, Issa [1985] pro-
posed the PISO (Pressure Implicit with Splitting of Operators) scheme. In this scheme,
the conservation of mass is designed to be satisfied within the predictor-corrector steps.

The governing equations consist of the momentum equation and pressure correction
equation written as follows:

Momentum
P 1 _ +1 +1
E(V,}+ = V) =—sji — Pl (5.3.13)

Pressure Corrector
n+l P oonrt ny ol

where s;; ;; refers to the derivatives of the sum of convection and viscous diffusion terms,

Siji-
Siji = (PVivi)i — Tiji (5.3.15a)
2p
Tij = W(Vij + Vi) — -j’Vk.sz‘j (5.3.15b)
(a) Predictor
P
AI(V _Vj) 1]1 p] (5.3.16)
(b) Corrector 1
* p * Lk _ P *
Py = ”E(Vm’ = Vigh TS = Vi S (5.3.17)
p kK * e
V=) = s P (5.3.18)

with v} ; set equal to zero in (5.3.17) in order to enforce the conservation of mass.

(c) Corrector I1

*F P *k

Py = At"u Sijij (53.19)
p Fk sk n

_t (V] Vj) I] ; p j (5.3.20)

with v7*, = 0 being once again enforced in (5.3.19). Thus, in the above process, there
are no iterative steps involved.

In order to increase stability and accuracy, we may split s;;; into diagonal and non-
diagonal terms.

Siji = s[(le) + S” f A(D)V[ + T[(]A? (5.3.21)
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To illustrate this splitting of diagonal term, consider a one-dimensional case
3 I
i = — —k— 53.22
Siji = Bx(pud) 8x) ( )
or

(pud)i1 — (pud)iot  (kd)i 1 — 2(kd); + (k)1
2Ax Ax?

a -4
Ax (bip1 — &) + i_%(¢t—<hﬂ

i
i+ Ax,

Sij_i =

1
= AT [(wd))H% — (pud)_y —
Construct an upwind scheme to get

(pt); 1 — (pu);_y iy for (4u)

(P”d))w% - (pud))f—% = [(pu)i+%¢i+1 - (Pu)i—%d)i for (—u)

Then we arrive at

(pud);,1 = (p) i + (b)) &y . )
(pud))i-l_—z = (pu)::fi bio + (p;)zj_l;i ] with (pu)i — E(pu + lpul)

Thus s;;; can be written as

1
Siji = A_xi(ad)iH + B +vdyi 1) (5.3.23)

where

ki+% n _ kiy1 k; 1

Axi-‘r%

+ k
¥ _(pu)i“% B Ax,
=3

a = (pu);_% -

M=

Rewriting (5.3.23), we have

B v ¢
a By &y
a B oy &3

o B | [ds

I
oo o™
OO S
oW o o
o oo
TEEE
SO R <
SR o=
R o2 ©
o< o C
eEeTE

(5.3.24)

or for multidimensions, we write (5.3.24) as

siji = APV s (5.3.25)

Note that s;; ; is diagonally dominant for low Mach number flows,
(P“)H% > (pu)i—%

or

B > lof + vl
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If Mach number increases (high speed or compressible flow), then (pu), _ > (pu);, L >
0, or

B <lal+Ivl

This implies that the diagonal dominance diminishes at high speed or compressible
flows. We discuss a remedy for this problem in Section 6.3.3 on the PISO scheme for
compressible flows.

With the splitting of s;;; into the diagonal and nondiagonal parts, we proceed as
follows:

(a) Predictor

(Aitaij t A(f'?))vzk - _S:f(JN) - p/ + EVJ (5.3.26)

(b} Corrector 1

(Lo AP ) =0 =57~ 1) 5320
p O\ e o .

[(E&f + A ) (p"—p ).,} =i (5.3.28)

Solve (p* — p™) and insert the result into (5.3.26) to obtain new v;*.

(c) Corrector 11

p D e Y *(N
(Eaﬁf + 4 ))Vf AV T s = P (5.3.29)
(4 AP Y= Rvi = =52 = oy 5330

Subtracting (5.3.29) from (5.3.30), we obtain

(—al, Al )( —v) = =5 =) = (7 = ), (5.331)

For v;7* = 0, we must have

1 -1
p (D) *k * — P (D) #+(N) *(N) *k
[(Eaif + Ay, ) (p™—p )'i],j = _(Al‘ak + Ay ) (Sij,k — Sijk )q}. + Vi,

(5.3.32)

Solution of (5.3.32) leads to
Vi = i (5.3.33)
ptt = ptl (5.3.34)

This completes the splitting process in which the v** and p** fields imply the exact
solution V?+1 and p"*!. For additional information on this procedure, see Issa, Gosman.
and Watkins [1986].
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9.3.3 MARKER-AND-CELL (MAC) METHOD

This is one of the carliest methods developed for the solution of incompressibie flows,
although its use in the original form is no longer pursued, but it has been altered to
other more efficient schemes. The basic idea of MAC as originally introduced by Harlow
and Welch [1965] is one of the pressure correction schemes developed on a staggered
mesh, seeking to trace the paths of fictitious massless marker particles introduced on
the free surface. The solution is advanced in time by solving the momentum equations
for velocity components using the current estimates of the pressure distributions. The
pressure is improved by numerically solving the Poisson equation,

pi=f (53.35)
with
aD
=5-— 5.3.36
S=1-(pvivj)i +nv,il; (5.3.37)
D=v, (5.338)

Here, the correction in pressure is required to compensate for the nonzero dilatation
D (5.3.38) at the current iteration level. The Poisson equation is then solved for the
revised pressure field. The improved pressure may then be used in the momentum
equations for a better solution at the present time step. If D does not vanish, cyclic
process of solving the momentum equations and the Poisson equation is repeated until
the velocity field is divergent free.

The original MAC method was based on an explicit time-marching scheme. Sub-
sequently, implicit schemes have been implemented by various authors [Briley, 1974;
Ghia, Hankey, and Hodge, 1979].

5.4 VORTEX METHODS

Two-Dimensional Vorticity Transport Equation

In the previous sections, we dealt with primitive variables, v; and p. An alternative
approach is to use the vortex methods in which we utilize the vorticity and stream
functions as variables.

w=Vxv (5.4.1)
V= Sl'jl!.l_ji,' (542)

where w is the vorticity vector, g;; is the second order tensor of the permutation symbol
for 2-D,

1 forep;
£ = -1 for €21
0  otherwise

and s is the stream function.
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For incompressible two-dimensional flows, the scalar vorticity transport equation is
written as

Jw

m + WV = vwy (5.4.3)

where o = w; is the component of the vorticity vector w in the direction normal to the
x-y plane. Auxiliary equations required are

Vi =—w (5.4.4)
duov  oud

Vip=op( LY MOV (5.4.5)
dxdy 0y odx

or

02y %y [ 8%\

Vip =2 — 4,

p==p {sz 3y? (8x8y) (5.4.6)

It is seen that the variables v;, p, U, and » may be computed using equations (5.4.1)
through (5.4.6).

For simplicity, let us consider a wall located at y = 0. Referring to Figure 5.4.1, we
have

Bp) (8(;))
Py (e (547)
(3)6 wall 8y wall
or
Pit+l.1 — Pi-1.1 —3w; 1 +4w; 2 —w; 3
— * 2~ W 54.8
2Ax " 2Ay ( )

Here, the pressure must be specified on the wall surface. The pressure at the adjacent
point can be determined with a first order, one-sided difference expression for dp/dx in
(5.4.7). Thereafter, (5.4.8) can be used to determine the pressure at all other wall points.

@) vy <
v=0
v =0
W=y,

b)

Figure 5.4.1 Illustration of vortex methods. (a) Grid point normal to a flat plate. (b) Driven cavity
problem.
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Notice that for the simultaneous solutions of (5.4.2), (5.4.3), (5.4.4), and (5.4.6),
we may use the finite difference schemes presented in Chapter 3. For example, the
nonlinear terms on the right-hand side of (5.4.6) may be represented as

V2p = 2pi,j|:(¢f+1"' — 2y ; + llfi_1,j) (q;l-‘jﬂ — 20 — lbi,j_1)

(Ax)? (Ay)?

_ (l!l;-&-l,]-&-l ll»’z—l»l,jilAXA‘!;—l,]-&-l + ll"l—l-j‘l) :| (549)

where the alternative mixed derivative may be chosen as shown in Section 3.5.

For a steady state problem, the Poisson equation for pressure is solved once, that is,
after the steady-state values of w and ¢ have been computed.

For time dependent problems, the solution of the vorticity transport equation and
the Poisson equation requires that boundary conditions for s and  be specified. At
the wall, { is a constant and may be set equal to a reference value, that is, & = 0. To
find w at the wall surface, we write ¢ in terms of Taylor series about the wall point

(i, 1),

s 1 8%
Wiz = U1+ 3—y Ay + a2 (A)’)z + - (5.4.10)
i i1
where
J
% =uiy =0 (5.4.11a)
i1
9? 3
8—;} = 8_:; (5.4.11b)
i1 i1
d d 2
;1 = vy up_ 0¥ (5.4.11c¢)
Cooaxfy Ayl ay* |1
thus, rewriting (5.4.10) as
1
Win =1 — zwi,IAyz + O(AY) (5.4.12)
21 — Pi2)
w1 = _—A—yz— + O(Ay)
=3¢ +4 i
i) = %—d’ = 2l tm‘!"z * s (54.13)
Yz y

Three-Dimensional Vorticity Transport Equations

For three-dimensional problems, the vorticity transport equations are of the form
[Chung, 1996]:

Jo

ot

v=V{ xa=V x ¥ (5.4.15)

+(v- Vo —(0-VIV=1Vie (5.4.14)
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with
vi = €k Px ; (5.4.16)
i=1 vi=W;3;—- W3
i=2 vy=U;— Py, (5.4.17)
i=3 wvi=W— ¥y,
Py = Al

and
w=—-VT (5.4.18)

Note that Vs is perpendicular to the velocity vector v and fi is perpendicular to the
plane Vi and v, whereas ¥ is known as the three-dimensional stream function vector.
The geometric properties of the stream function vector are presented in Section 12.2.

Another approach is to use the fourth order stream function vector equation of the
form

J
avz\lr +(Vx ¥ VIV — (V2. V)(V x &) = VT (5.4.19)
with the boundary conditions extended to three-dimensional geometries.

Solutions may be obtained from either (5.4.14) or (5.4.19) using the definitions given
by (5.4.15) and (5.4.18). These and other subjects on applications in three-dimensional
stream function vector components are further detailed in Section 12.2.

The Curl of Vorticity Transport Equations

We have noted that the advantage of the vorticity transport equation(s) is the numer-
ical stability accrued from removing pressure gradient terms from the solution process.
However, the velocity must be calculated from solving simultaneously (5.4.14) through
(5.4.18) or from (5.4.19). These steps can be eliminated if we take a curl of the vorticity
transport equation (5.4.14), in which the velocity is the only variable. This subject will
be discussed in Section 12.2.1.

5.5 SUMMARY

The incompressible flow analysis based on the artificial compressibility method and
the pressure-based formulation using SIMPLE, SIMPLER, SIMPLEC, and PISO have
been presented. It was shown that these methods are devised in order to ensure the
conservation of mass so that pressure oscillations can be prevented. Vortex methods
in which pressure terms are absent are preferred in dealing with rotational incom-
pressible flows as they are computationally efficient. Accurate physics of fluids can be
obtained without difficulties which may arise from inaccurate pressure calculations in
other methods.

The current trend appears to be in favor of preconditioning of the time-dependent
term of the density-based formulation so that both compressible and incompressible
flows can be treated. This is because, in many practical situations, high- and low-speed
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regions are coupled particularly in high-speed boundary layer flows and the analysis ca-
pable of handling both compressible and incompressible flows is frequently in demand.
Details of the preconditioning process for the combined density- and pressure-based
formulations for the incompressible flow analysis are presented in Section 6.4.

Since the solution of incompressible flows can be obtained as a part of the compress-
ible flow formulation, it appears that more attention is given to the compressible flow
analysis. This leads to a motivation toward attempting to develop a general purpose
program, anticipating that the results of incompressible flows arise automatically when
the flow velocity decreases at low Mach number. This topic is addressed in Section 6.5.

The theoretical basis for three-dimensional vorticity transport equations is exam-
ined. Numerical examples for the three-dimensional vortex methods based on the three-
dimensional stream function vector components will be discussed in Section 12.2,

Although not presented in this chapter, other methods have been used in the past.
One of the significant developments in the late 1950s was the particle-in-cell (PIC)
method [Evans and Harlow, 1957, 1959], particularly efficient in the flows with large
distortions (see Section 16.4.3). Recent developments dealing with multiphase incom-
pressible flows will be presented in Chapter 25.
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GCHAPTER SIX

Compressible Flows via Finite Difference Methods

In general, the physical behavior of compressible flows is more compticated than in
incompressible flows. Compressible flows may be viscous or inviscid, depending on
flow velocities. Compressible inviscid flows are analyzed using the potential or Euler
equations, whereas compressible viscous flows are solved from the Navier-Stokes sys-
tem of equations. Shock waves may occur in compressible flows and require special
attention as to the solution methods. Furthermore, shock wave turbulent boundary
layer interactions in compressible viscous flows constitute one of the most important
physical phenomena in computational fluid dynamics. Let us consider air flows at speeds
greater than 100 m/s, which corresponds to a Mach number of approximately 0.3, but
less than 1700 m/s, or approximately Mach 5. Air flows in this range (0.3 < M <5) may
be considered as compressible and inviscid. This range is usually subdivided into re-
gions identified as subsonic (0.3 < M < 0.8), transonic (0.8 < M < 1.2}, and supersonic
(1.2 < M <5).For M > 5, the flow is referred to as hypersonic. Hypersonic flows around
a solid body are usually coupled with viscous boundary layers. Effects of dilatational
dissipation due to compressibility, high temperature gradients, vortical motions within
the secondary boundary layers, radiative heat transfer, vibrational and electronic ener-
gies, and chemical reactions are examples of some of the complex physical phenomena
associated with hypersonic flows.

In order to take into account the compressibility and variations of density in high-
speed flows, we utilize the conservation form of the governing equations, using the
density-based formulation. This is in contrast to the pressure-based formulation for
incompressible flows discussed in Chapter 5. For compressible flows, we encounter
some regions of the flow domain (close to the wall, for example) in which low Mach
numbers or incompressible flows prevail. In this case, the density-based formulations
become ineffective, with the solution convergence being extremely slow. Toresolve such
problems, various schemes have been developed. Among them are the preconditioning
process for the time-dependent term toward improving the stiff convection eigenvalues
and the flowfield-dependent variation (FDV) methods allowing the transitions and
interactions of various flow properties as well as all speed flows.

For simple cases of compressible inviscid flows (irrotational, isentropic, isother-
mal), the potential equation can be used, whereas the Euler equations are preferred
for more general compressible inviscid flows. For compressible viscous flows, various
approximate governing equations such as boundary layer equations or parabolized
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Navier-Stokes system of equations are utilized. However, the most general and com-
plete analysis is to invoke the full Navier-Stokes system of equations, which is the
emphasis in this book.

FDM formulations and solution procedures for the potential equation are presented
in Section 6.1, with Euler equations and the Navier-Stokes system of equations in
Sections 6.2 and 6.3, respectively. The solution of the Navier-Stokes system of equations
for compressible and incompressible flows using the preconditioning process will be
presented in Section 6.4, followed by the flowfield-dependent variation (FDV) meth-
ods in Section 6.5 and various other methods in Section 6.6. Finally, the boundary
conditions for compressible flows in general are discussed in Section 6.7.

6.1 POTENTIAL EQUATION

6.1.1 GOVERNING EQUATIONS

The governing equation for steady-state compressible inviscid flows may be represented
by the potential equation of the form (2-D),

[1 - (g)z]% * [1 B (2)2]2—; - %(% + %) =0 (6.1.1a)

or
u\’7 du v\l av 2 ou
[ (a)]ax+[ (a”ay 2oy =7 (6.1.1b)
with
1 v  ou
- - _ = 1.2
azuv(ax ay) (6.1.2)

and f = 0 for irrotational flow. In terms of the velocity potential function ¢, (6.1.1) may
be written as

1
b — a—zcb,zdlj(b,ij =0

or
b ?d 2 dbad 3
1-M)—+(1-M)— - 227 =0 6.1.3
( X)sz +( y)ayz a’ ax dy dxdy ( )
with u = d¢/dx, v =3b/dy, M, =u/a,and M, = v/a.
For small perturbation approximations in irrotational flow, we obtain
b 3% 14+v\addd*d
1-M)— + — = M? — 6.1.4
( ~) ax?2 + dy? OO( U ) dx dx? ( )

For unsteady flows, using the first and second laws of thermodynamics for isentropic
and irrotational flows, (6.1.1) is modified to

al

1 1[9° 8
by — ;l_2¢,1'¢,j¢.ij - —[8—1‘2 + 5;((12:’42:‘)] =0 (6.1.5)
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where

20 P =y = D] Hy— b - 20
=Ly yi= - D o ot - 3

In the case of isentropic flows with stagnation density po and stagnation enthalpy H,,
we have

p 1 1 8677
Pl — b — —— 6.1.6
2 (i it - o] (6.1.6)
with
1
Hy=H+3v-v (6.1.7)

For steady flows, (6.1.6) takes the form

P _ | 1 w
Y 1= b 6.1.8
21 e (618)
or

_ ! e 1 1
p Y~ y—1 .17
— = ]_ Ed i i = ] - —“M 6‘1‘9
po L 2a5 bid ] [ 2 ] (6.1.9)

If a nonisentropic process with rotational flows is considered, the momentum equa-
tion is written as

TVS+vxw—VH=0 (6.1.10)

where S is the entropy per unit mass. Combining (6.1.10) and (6.1.2), we obtain for two
dimensions

1 a? uv
f - —T/—*(Ho‘ini - Y—RS_in,') a—2 (6]11)

with
V* =vn —uny

It follows from (6.1.10) and (6.1.9) that

p —AS _L . =
a_[exp( - )(1 21%(1)_,(1).,) ] (6.1.12)

where AS is the entropy increase over the shock. This is equivalent to a modification
of the stagnation density pg

P 1 v
P (1o g, 6.1.13
P (1= g (6.1.13)

with

1
pPo2 = po1{ —
Dot

where the subscripts 1 and 2 denote upstream and downstream of the shock, respectively.
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6.1.2 SUBSONIC POTENTIAL FLOWS

For irrotational flow [ f = 0in (6.1.3)] with Ax = Ay = 1, the finite difference scheme
may be written as

(1= M), (bisry — 20 + bimr )+ (1 - MZ), (i1 = 2+ dij1)
N ]

1
- i(MxMy)i.j(d)inLl»j-i-l —bip1j1—bimrjr+dio 1) =0 (6.1.14)

It is interesting to note that (6.1.14) is diagonally dominant for subsonic flows, while
this is not true for transonic and supersonic flows. This implies that the elliptic nature
of (6.1.14) changes to parabolic and hyperbolic forms.

Another scheme is to use the continuity equation,

V)=V -(pVd)=(pd;); =0 (6.1.15)

Thus, the finite difference form of (6.1.15) may be written as

pi+%,j(¢’i+1.j - ¢1/) - pjf%,j((bi.j - ¢i—1.j) + Pi j1 (d)i‘j+1 - ¢z;)

2

—pPiji(dij— i) =0 (6.1.16)

To solve (6.1.16), the so-called Taylor linearization [Murman and Cole, 1971] may be
used:

V- (p"Ve") =0 (6.1.17)
or
V- [p(IVH"H) V] =0 (6.1.18)

where density is calculated from the known values of the velocities obtained at the
previous iteration step n.

6.1.3 TRANSONIC POTENTIAL FLOWS

As the Mach number approaches unity, the potential equation tends toward parabolic,
leading to instability or nonconvergence of the numerical scheme. To cope with this
difficulty, a number of numerical methods have been developed. They include artificial
viscosity, artificial compressibility, artificial flux or upwinding, and iterations with over-
relaxation, among others.

(a) Artificial Viscosity with Nonconservative Equation
In order to resolve shock discontinuities, we consider two forms of finite differences:

Central Differences
azd) (c) 1
dx? i ~ (Ax)?

(bit1) =2 j + di1 ;) (6.1.19)
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Domain of

\/7 Dependence

/

& &— J Figure 6.1.1 Region of dependence.

Backward (upwind) Differences

RN (B) 1

dx? (Ax)?
Obviously, the central difference is in opposition to the physical properties of supersonic
flows since only the points located within the region of dependence (Figure 6.1.1) can

have an effect on the flow properties at the point under consideration (¢ ;). Subtracting
(6.1.19) from (6.1.20), we get

(b2 =21+ dij) (6.1.20)

iJ

aldr) (B) 82¢ ©) 1
T = =_ 3 43—
ox2 L 5x2 L (Ax)z(d)lH-J Py + 31 — b 2,7)
or
2B 524 (O 53
a—f = —f - Ax—(i) (6.1.21)

Thus, it is seen that the backward difference amounts to adding an artificial viscosity,
Ax 237?, to the central difference. Therefore, the upwind differencing automatically adds
an entropy condition in the form of artificial dissipation terms which are proportional
to the mesh size.

For applications to the small perturbation equation, we have the following options

[Murman and Cole, 1971]:

(1—-MHOE 4+ 4 =0 for M > 1 (6.1.22)
(1= M) + &) = —Ax(M? — 1)ty for M > 1 (6.1.23)
(1— M)+l =0 for M <1 (6.1.24)

To apply these conditions to the full potential equation, we must take into account
the local flow direction (Figure 6.1.2). Jameson [1974] introduced “rotational difference
scheme” for this purpose.

Choosing the local streamline coordinates as (€, ),

(1= M)ber — dn =0 (6.1.25)
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+
v
n
Figure 6.1.2 Local streamiines.
‘
where
1
dee = ?(uzq)” + 2uvdyy + Vidyy) (6.1.26a)
L5 2
Py = ?(v brx — 2uvdyy + 1"y ) (6.1.26b)
with ¢ = (12 + v?)? and
i? = Dt jo1 = Dot jrt + dio1 1)
B
d))(cy) = 1Ax Ay((b” b1 —dij1+dimjo1)
Ay
(C) - —d’xxy ‘bxyy
B) _ ) _ W V2 uv
e = Pge T _Axd)xxx - _'A)’d)yyy - _(Axd)xxy + Ayd)xyy)
q q q
Thus, the rotational difference scheme takes the form
(1- Mo’ — 69 = (6.1.27)

1
g = P(l - Mz)[Ax(uzd)xxx + qu)xxy) + AY(Vzd)yyy + ”V(bey)]
(b) Artificial Viscosity with Conservative Equation
The potential equation in conservation form with artificial viscosity is written as
V- (pVb+A)=0 (6.1.28)
where A is the artificial viscosity vector,

A = —pw(up Axiy + vp,Ayiy) (6.1.29)
p av p ou n av
= ——Y - = — —ft U— ——
P a2 ax a2\"ox T Vox

p v p au + v
=V — = ——t H— V—
Py a’  dy az\ 3y oy
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with w being the switching function,
1
= 0.{1—-— 6.1.30
o (1) 6120
and the derivatives of the density are upwind differenced.

(c) Artificial Compressibility
Equation (6.1.28) may be rewritten in the form [Holst and Ballhaus, 1979],

=)+ 55 =0 (6131)
where

P =p — UprAx (6.1.32a)

P=p—ppyAy (6.1.32b)

The artificial densities are prescribed at the midpoints (i + %, jland (i, j £ %)

_p_i+%.j =Pyl ll‘ff(pi+%,j - P,;%,,') (6.1.33a)
Foru, . ;<0

Pict =Pty it j(pist — Py ) (6.1.33b)
Forv, ;.1 >0

Bijpl = Pt — Bij(Pi 1 —pijot) (6.1.34a)
For Vijrl < 0

Pt = Pigat +igatlpij1 —Pies) (6.1.34b)

An alternative form for artificial compressibility may be given as

V- (pVd)=0 (6.1.35)

where
dp u v

p=p—pn—AL=p —pALl| - — 6.1.36

P=p—ny p—n (qpx+qpy) ( a)
or

- u v

b=p u(—pxm +2p,0y) (6.1.36b)

q q
Various switching functions have been suggested for stability, such as
M
W= max[o. (1 — M?)CMZ] (6.1:37)

where M, is a cutoff Mach number of the order of M = 0.95, 1 < C < 2. The cutoff
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Mach number M, activates the switching function in the small subsonic region M, <
M < 1 close to the sonic lines.

(d) Artificial Flux or Flux Upwinding

For switching at sonic points to avoid unwanted expansion peaks, we may utilize
controlled monotone schemes such as those used in Euler equations {Engquist and
Osher, 1980; Osher, Hafez, and Whitlow, 1985]. To this end, we may write the continuity
equation in the form

dp pq 0q
— =——=— 6.1.38
14 ar ot ( )
and
dpq p 299 3q dq
9~ @l a0 tPe — P Mg
(6.1.39)
(1 1 \ap
A YEN FY,
The corrected upwinded flux pg can be written in supersonic regions as
1 \ap
pg=pg—qll——)—A~L 6.1.40
pg = pg q( M2) i ( )
or
N a
Pq =pq— —(pg)Al (6.1.41)
A modification of (6.1.41) results in
_ d .
pg =pq — —Inlpg —pg")]AL (6.1.42)

oL

where p*g* denotes the sonic flux, p = 0 for subsonic flow (M < 1,g < ¢*,p > p*)and
i = 1 for supersonic flows (M > 1,q > ¢*, p < p*) (see Figure 6.1.3). The discrete form

d ™
/ \ ——— Shock

%//—— Sonic line \/

M <1l M>1 M< 1L L AM > 1
- - % I 195 —{ R -
-2 ! i+la i-1h il 1 Titn

(a) Sonic cell (b) Shock cell

Figure 6.1.3 Flux upwinding at sonic and shock point transitions.
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of (6.1.42) becomes
(f)—q)w%,,' = (PQ)H%,,‘ - Mpr‘z,j(l)q - p*q*)ﬂ-%,j + P“i—%,j(pq - P*q*)p%,j (6.1.43)

It is similar for other points. Thus, we have

For M < 1

(P ;= Py (6.1.44)
For M > 1

(PD)i1; =Py (6.1.45)
For M =1

(P@)iy1,; =(p7q") (6.1.46)

Notice that this scheme guarantees that expansion shocks will not occur when

(b@)isy; < (p*q"):
At a shock transition, we obtain

PD)iv1; = (D1, +(Pg—p 9 )L ; (6.1.47)

At shock points, the switching ensures that there is only one mesh point in the shock
region since the corresponding cell is treated as fully supersonic or fully subsonic as
soon as the shock cell is left. This results in a very sharp shock.

(e) Over-Relaxation Scheme
To solve (6.1.22) in the supersonic region, we write

(= M — 2450 4 7T + (7] — 24+ 47 1) =0 (0149
where

B = ¢ 4w (d)ﬁfl _ d)n) (6.1.49)
Denoting that

Adb =& — ¢ (6.1.50)
we have

(M* = 1)i j(wAd_2j —20Ad; 1. + Ady ;) — (Adi jo1 — 28y j + Ady j1) =wR,

(6.1.51)

or

(M = D[wE '8 + (1~ w)|Ady; — 8y,; = wR/ (6.1.52)

where E is the shift operator (£,d; ; = dx,1.;) and & is the central second difference
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operator. The equivalent artificial time dependent formulation is

(M2 — 1)[0dbert + (1 — 0)br] — dyyr = %R (6.1.53)
where
~ % (6.1.54)

with 7 being a fictitious time step and where &, is backward differenced and R is the
differential potential equation.
In (6.1.53), &y, is represented by

by = 85" + (0 = 1)3]¢”" (6.1.55)

but the appropriate procedure in the supersonic region is to march in the flow direction,
such that ¢! can be determined only as a function of the new values ¢/'*} 5 and &
determined on the previous columns. This implies that &y, should be represented by
82(1)”“ in the supersonic region. Note that the scheme (6.1.48) satisfies this requirement
for o = 1. Fora general relaxation procedure, this condition can be satisfied by taking the
y-derivative terms at the new level n + 1, instead of the intermediate level, introducing
a factor w in front of the y second difference operator of (6.1 52).

The analysis using the potential equation has been well established, but important
physical phenomena such as rotational, nonisentropic, or nonisothermal effects are not
taken into accountin the governing equation. For this reason, the most general approach
to the analysis of compressible inviscid flows must resort to the Euler equations. This is
the subject of the next section.

6.2 EULER EQUATIONS

Compressible inviscid flows including rotational, nonisentropic, and nonisothermal
effects require simultaneous solutions of continuity, momentum, and energy equations.
In this approach, however, specialization for small perturbation or linearization outside
of transonic flow as done in the potential equation can not be allowed. Thus, the diffi-
culty encountered in transonic flows with shock discontinuities must be resolved with
special computational schemes.

The most basic requirement for the solution of the Euler equations is to assure that
solution schemes provide an adequate amount of artificial viscosity required for rapid
convergence toward an exact solution. Furthermore, eigenvalues and compatibility
relations associated with convection terms are important factors in the resolution of
shock and expansion waves.

Solution schemes for the Euler equations may be grouped into three major cate-
gories: (1) central schemes, (2) first order upwind schemes, and (3) second order upwind
schemes and essentially nonoscillatory schemes. These schemes are tabulated in Table
6.2.1 and elaborated in the following subsections.
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Tabie 6.2.1

Central Schemes

Various Computational Schemes for Euler Equations

First Order Upwind Schemes

Second Order Upwind Schemes

1. Combined Space-Time Integration

(a) Explicit Schemes
Lax-Friendrichs — First

order (1954)
Lax-Wendroff — Second
order (1960)

(b) Two-Step Explicit Schemes
Richtmyer and Morton (1967)
MacCormack (1969)

LeRat and Peyret (1974)

(¢) Implicit Schemes
MacCormack (1981)

Casier, Deconinck, Hirsch (1983)
LeRat (1979, 1983)
2. Separate Space-Time Integration

(a) Implicit Schemes
Briley and McDonald (1975)
Beam and Warming (1976)

(b) Explicit Schemes (Multistage

Runge-Kutta)
Jameson, Schmidt, Turkel (1981)

1. Flux Vector Splitting
Courant, [saacson, and
Reeves (1952)
Moretti (1979)
Steger and Warming (1981)
VanLeer (1982)

2. Godunov Methods-Riemann

Solvers
(a) Exact Riemann Solvers
Godunov (1959) -
First order
VanlLeer (1979) -
Second order
Woodward and
Colella (1984)
Ben-Artzi and
Falcovitz (1984)
(b} Approximate Riemann
Solvers
Roe (1981)
Enquist and
Osher (1980)
Osher (1982)
Harten. Lax,
Van Leer (1983)

1. Extrapolation
(a) Variable Extrapolation
(MUSCL)
Van Leer (1979)
(b) Flux Extrapolation
Van Leer (1979)
Explicit TVD Upwind
VanLeer (1974)
Harten (1983)
Osher (1984)
Osher and Chakravarthy
(1984)
3. Implicit TVD Upwind
Yee (1986)
4. Central TVD Implicit or
Explicit
Davis (1984)
Roe (1985)
Yee (1985)
5. Essentially Nonoscillatory
Scheme
Harten and Osher (1987)
6. Flux Corrected Transport
Boris and Book (1973)

L

6.2.1 MATHEMATICAL PROPERTIES OF EULER EQUATIONS

6.2.1.1

Quasilinearization of Euler Equations

The Euler equations may be linearized in terms of conservation variables or
primitive (nonconservation) variables. Consider the conservation form of the Euler

equations,
aUu  dF; oU oU
— L=0, or —+a—=0 (i=1,273)
at ox; ot 0x;
with
p pVvi
dF;
U= pv; |, F; = pV,‘Vj—f-pS,'j , a,‘=ﬁ,
pE p Ev; + pv;

(6.2.1)

(6.2.2)
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For two dimensions, components of the convection Jacobian a; (i = 1, 2) are given by

B 0 1 0 0 7
v =3t (y - 1w
( 2) 4 2) (B —yu —(y—-1v v-1
a) =
—uv v U 0
-1
—vuE+ (y — Dug®> ~vE-— Y 3 (Vv +3u%) —(vy—-Duv  ~vyu
(6.2.3a)
i 0 0 1 0 7]
—uv v u 0
(y—3v (-’
R A A Y G-y oyl
5 y-1 5 2
—WE+ (v =Dvg" (v -Duv yE——— (" +3v) v
(6.2.3b)

Alternatively, the Euler equations may be written in nonconservation form for isen-
tropic flow in terms of the primitive variable V as

av v
— +A— =0 6.2.4
at + ox; ( )
with
_ ) _
z U
V= = v (6.2.5)
. (& + V)
p (v — 1)(pE P> )
u p 0 O] v 0 p 0]
1 0
0 u 0 - 0 v (1)
A= Pl. A=|y o , 1L (6.2.6)
0 0 u O p
[0 pa® 0 u| |0 0 pa® v

Introducing a transformation between the conservation and nonconservation
variables,

ol

M=__
oV

(6.2.7)
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or
-1 0 0 0 ]
1 0 0 0 7 — 1
0 0 i - 0 0
“ P P
M=|v © o |M'=] _ 1
i b = 0 - 0
e ’ ’
L2 Y — 14 Y - 1
|4 —(y-Du —(y—Dyv y—1]
(6.2.8)
and combining (6.2.1), (6.2.4), and (6.2.7), we obtain
A aVv
M— +aM— =0 6.2.9
ot Ta dx; ( )
Multiplying (6.2.9) by M~! | we obtain the form given by (6.2.4):
Vv oV
— 4+ A—=0 6.2.10
ar Mo ( )
with
A;=M"'aM, a =MAM! (6.2.11)

Note that M represents the transformation matrix between the conservation variables
U and the primitive variables V.

6.2.1.2 Eigenvalues and Compatibility Relations

In order to examine the oscillatory behavior of the equations such as (6.2.4), we write
V in the form

V =Velkx=ot — yeltaxi-oy (6.2.12)

Substituting (6.2.12) into (6.2.10) leads to

(—w+Aik;)V=0 (6.2.13)
or

K- X[ =0 (6.2.14)
with

(D:)\I, A,‘K,‘ZK
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For one dimension, (6.2.14) becomes
uw—A\ p 0
0 wu—-N - =0 (6.2.15)
0 pa? u-—NX\

where Ny =u, Ay =u +a, A3 =u — a, constitute eigenvalues.
Return to (6.2.10) for one-dimensional case and write
oV LAY A%
L!'—+4+L'A— =0 with L=— (6.2.16)
dt dx JdW
where L~! is the matrix which will diagonalize the matrix K= A;k;. Using (6.2.7)
in (6.2.16) leads to

aU oU
LM (—+A—)=0 6.2.17
(at * ax) ( )
Similarly, we may define the variable P in the form
aU  oU a9V
oW 9V oW

so that the diagonalized eigenvalue matrix becomes
A=L'"M 'KML =P 'KP (6.2.18)

where P! and P denote the left eigenvector and right eigenvector, respectively.
Let us now postulate an existence of the characteristic variables W such that

SW=L"'8V (6.2.19)
Substituting (6.2.19) into (6.2.16) yields

oW W
— +LAL— =0 6.2.20
ot + ox ( )

which is known as the compatibility equation.
The characteristic variables are also related by

SW=P '8U, or 3SU=PsW (6.2.21)

Thus, the relations between the three sets of variables (Equations 6.2.7, 6.2.19, and
6.2.21) may be summarized as shown in Figure 6.2.1.

Figure 6.2.1 Relation between conservation variable U, primitive
variable V, and characteristic variables W.
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6.2.1.3 Characteristic Variables

The existence of characteristic variables postulated in (6.2.19) and (6.2.21) may now be
examined for one-dimensional flow.

For the eigenvalues determined from (6.2.15), the three left eigenvectors of K are

given by

¢
(2
3

(o 0
0 B

0 o

Q-

a2
B
pa
—d
pa

(6.2.22)

where «, B, d are the three normalization coefficients for the eigenvalues, A\ = u, A =
u+a,\s =u-a. Witha = B = 8 = 1, the diagonalization matrices are

p

0 —— L
a? ! 2a

1

1 _ N L: 0 l
pa 2

1 __1 0 pa
pa | -2

where L™! and L denote left and right eigenvector of K, respectively.
Similarly, transformation matrices P~ and P can be derived.

P'=L 'M!=
[ 1
P=ML=|
woop
_ 2

1_3;11"_2
2 a2

(y*] 2 )1
—u"—ua ) —
2 pa

(v—l)g ¥_
o (- g~
Cfa+ -] S0

e :
2a
—-(u—a)

where P~! and P denote left and right eigenvectors of a;, respectively.
Rewriting (6.2.16) in one dimension,

vV av
L' —+4+LT"TALL '~ =0
at dax
or
v av
L' —4+AL'— =0
at 0x

(6.2.23)

(6.2.24a)

(6.2.24b)

(6.2.25a)

(6.2.25b)
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where

A=| u+a (6.2.26)

Expanding (6.2.25b) results in the continuity and momentum equations written in the
form

op 1 adp dp udp

& F L 6.2.27
o alor | ox  alox (6:2:272)
ou 1 ap ou 1 ap

T —_ 4+ —23=0 6.2.27b
ot +pa at +(u_*_a!)(ax_*—pa E)x) ( )
0 19 0 19

S P (L i (6.2.27¢)
at  pa ot dx  paix

which are known as compatibility equations. It follows from (6.2.19) or (6.2.27), by
introducing an arbitrary variation 9, that

1

W, =8p — a—ZSp =0 (6.2.28a)
1

oW, =du+ —dp=0 (6.2.28b)
pa
1

oW =du— —38p =20 (6.2.28¢)
pa

and subsequently from (6.2.20) or (6.2.28) that

a | . s | W
— | W | + u++a — I W, | =0 (6.2.29)
at ax

W3 U—d W3

If the characteristic variables Wi, W>, W3 remain constant, they are known as
Riemann variables, Riemann invariants, or Riemann solution, defined as follows:

d . .
W =p-— [ —f = constant along the Cy characteristic, stream line
a

d -
Wo=u+ @ _ constant along the C, characteristic

pa

dp .
W3 = u — | — = constant along the C_ characteristic

pa

These characteristic lines are schematically shown in Figure 6.2.2, and propagation of
flow lines associated with characteristic lines are shown in Figure 6.2.3.
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S
Cal

X

Figure 6.2.2 Characteristic lines for one-dimensional flow.

For isentropic flow it can be shown that

w =2 (6.2.30a)
p“/
2a
Wr=u+ =J, (6.2.30b)
vy-—1
2
Wyimu— 2 — ] (6.2.30¢)
vy—1
or
vy —1
a=-— (J.—J2) (6.2.31a)
1
u= §(J+J‘) (6.2.31b)

If the values of J, and J_ are known at a given point in the x—t plane , then (6.2.31a,b)
immediately give the local values of u and a at that point.

The propagation of flow lines associated with characteristic lines as related to
expansion wave and shock waves are shown in Figure 6.2.3. The number of bound-
ary conditions to be specified at inflow and outflow boundaries is determined by the
eigenvalue spectrum of the Jacobian matrices (6.2.6) in terms of the primitive variables
associated with the normal to the boundaries. Details for boundary conditions will be
presented in Section 6.7.

6.2.2 CENTRAL SCHEMES WITH COMBINED SPACE-TIME DISCRETIZATION

Central finite differences may be formulated using combined space-time discretization
(often known as Lax-Wendroff scheme). An alternative is to use independent space-
time discretization which is discussed in Section 6.2.3. In this section, we shall examine
the combined space-time discretization schemes.
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6.2.2.1 Lax-Friedrichs First Order Scheme

Consider the two-dimensional system of Euler equations in the form

U  of og

4 2= 6.2.32
ot T ox T ay ( )

This may be discretized by forward differencing U in time and central differencing f and
g in space.

n 1 n n n Ty
Ui,erl ( i+1,§ +U[ -1. +Ur i+l +U1] 1) 2 (f1+1/ fl 1}) 2 (g?,H-l _‘g?,j—l)

4

(6.2.33)

with

At Ar

=AU T Ay (6.2.34)

and

1 1 H

Uijl - 4( i+1,§ +U£ 1.5 +U j+H +U1] 1) (6235)

It can be shown that the von Neumann analysis leads to the stability condition,

2(u+a)’ + 'ryz(v +a) < 5 (6.2.36)
6.2.2.2 Lax-Wendroff Second Order Scheme
In terms of conservation variable U, we rewrite (6.2.32) in the form
m1 n Atz 3
Ut =U0"+ AU, + TU" + O(Ar) (6.2.38)

and combining (6.2.35), (6.2.37), and (6.2.38), we obtain the one-step algorithm,

2 2
U?Tl = U?l _Txaxfff - T)’Bygi] i 8 (al 16 f; j)+ (bt ]Sygl ])

+ TXZTY (5. (a; ;8,8 ) + By(bi,jaxfi,j)] (6.2.39)
where
0. f; (fz+1 i —fioig), oy = %(gi.jﬂ — g j-1) (6.2.40)
o8 j =fivn; — L1, 8,8 = &ij+1 — 8ij-1 (6.2.41)
etc.

Determination of Jacobians in (6.2.39) is cumbersome. To avoid this, it is preferable
to employ a two-step scheme [Lerat and Peyret, 1974].
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Step 1
Ut = 31(1},"+1 AU U U )
) (fz"+1 ; — L ;) %(g?.jﬂ — &) (6.2.42a)
Step 2
Uil =u -, (fnfllf - fz‘nﬁf) (gz o g:l;r—ll) | (6.2.42b)

The stability condition is shown to be, for Ax = Ay

~—(|v| +a) < f (6.2.43)
The following two-step scheme was introduced by MacCormack and Paullay [1972]:

ﬁi-i =Ui; - (fln+r j fl,j) - TY(gi].lj+1 - g?.j) (6.2.44a)

U= U —n(fi— 1)) — (@, — 8,1) (6.2.44b)

Ut = —(U, i+ ) (6.2.44c)
The corresponding stability condition is

At < [I}\(AA)Ixmax N D\(BA)‘|ymax]l (6.2.45)
or

! AxAy (6.2.46)

: (lul +a)/Ax + (v + a)/ Ay = [ulAy + |v|Ax + a/(Ax)? + (Ay)?

6.2.2.3 Lax-Wendroff Method with Artificial Viscosity

The Lax-Wendroff approaches with three-point central schemes lead to oscillations
around sharp discontinuities. For one dimension,

U - = (ff+; - f-_l) (6.2.47)

2

with f being the numerical flux,

fig + 1 T

fH-% = T 2 [+1 (fr+1 ) (62483)
f+f_ T
=" ! — 54y (6 —1io) (6.2.48b)
Now with the artificial viscosity added to (6.2.48), we write
fig+f 1
1= % - i’mu%(fiﬂ —f)+ D (Uin = Us) (6.2.49)
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where D is any positive function of U;1 —U; which vanishes at least linearly with
Ui+1 - Ui.
Substituting (6.2.49) into (6.2.47) leads to

U?H -Ui = _T(f‘ 1 = fz‘—%)LW

+3
+T[Di+%(Ui+1 -U;) - D,—_%(Ui - Uifl)]

where it is seen that the artificial viscosity terms are those discretized as

d d
Ax— (D—U)
ax ax

Hence, the addition of an artificial viscosity term can be seen as

)
fA) — ¢ AxD—U
ax

or

AV LW
fi(+%) - fi(+% - Dy (Uis1 — Ui)

6.2.2.4 Explicit MacCormack Method

Let us consider a quasi—one-dimensional problem such as occurs in a nozzle with a
variable cross-sectional area S.

aSU odSF dS .
. "B = = 2.
Py + ox 0, S=38(x) (6.2.50)

with
p pu 0
U=|pul|, F=| pu*+p |, B=|p
pL (pE+ plu 0

An explicit MacCormack predictor-corrector scheme is formulated as follows:

Predictor
sur —su?  SFY, —SF! 4SS
i i i L2 Bt =0 6.2.51
At + Ax dx|, ' ( )
or
At ds
* = SUM — = (SF,, — SF/) + At| — ) B! + D, 6.2.52
SUt SU1 Ax( i+1 1)+ (dx>[- i + (U) ( )

where the artificial viscosity term D; may be given by

D,(U) = £ [SU7., - 4sU;

i+2 I+ 68Ul — 45U + SUT,) (6.2.53)

with} < w <2, At = CAx/u + a.
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Corrector

1 At ds
suitt = 5 SU! + SUF — A—X(SF;" )+ Ar(d ) B + D*(U)} (6.2.54)

Numerical applications for this case are demonstrated in Section 6.8.1.

6.2.3 CENTRAL SCHEMES WITH INDEPENDENT SPACE-TIME DISCRETIZATION

Instead of using combined space-time discretization, we may employ independent time
discretization while maintaining central differences for space [Briley and McDonald,
1975; Beam and Warming, 1976, 1978]. We begin with the general form

dUi; i —fia L Bl — 8
Ax Ay

dt 2

where various finite difference schemes of the time derivative term may be applied. The
two level time integration of (6.2.50) leads to

af  ag\"™tt /ot 8
(14 £)AU™! — gAU"—Ate[( + g) ( + g)]
dx  dy oy

with § > —1/2,0 = 1/2(§ + 1) for linear stability.
The two-level integration scheme takes the form

of  ag\"" ot ag\”
(1+&)AU™ 4 Are( 8 =—Af{ — + —g) + EAU"
ax ay dx  dy
or

da  ob af b
A+8)+ao| =+ 2) [avr! = —ar( L 4 og )’ + EAU"
ox 0y ax y

Introducing a central discretization, we obtain

[(1+&) + 0(r.Bea + 7,8, D) AUT = -7, (887, +7,5,8") + £AU, (6.2.55)
or
(1+&)Aurt! + 92 (a,+1 jAU L —a g j AU ;)"
At
+ Bﬁ(bi,j-f—lAUi,,Hl —b; ;1 AU; Y
fr o gl —gl
= —ar( DL oL g B BLY L e Ay 6.2.56
( 2Ax * 2Ay +EAUE ( )
and with an ADI factorization, for § = 0
(1+ BTXSX)(l + BTyg b”)Aﬁi i = —(Txgxf;’j + Tysyg;fj) (6.2.57a)
(1407,8,b") AU = AT (6.2.57b)

Notice that each step is a tridiagonal system along the x lines for AU and along the y
lines for AU,
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6.2.4 FIRST ORDER UPWIND SCHEMES

In general, the central schemes tend to provide excessive damping with shock discon-
tinuities not well resolveld. To compensate for this trend, first order upwind schemes
can be used. However, overshoots and undershoots may occur at discontinuities. A
remedy for this difficulty can be provided by low- or high-resolution second order up-
wind schemes. In this section, we discuss the first order upwind schemes, followed by the
second order upwind schemes in Section 6.2.5. High-resolution second order upwind
schemes will be discussed in Section 6.2.6. The first order upwind schemes are divided
into two groups: flux vector splitting schemes and Godunov schemes. These and other
topics are presented below.

6.2.4.1 Flux Vector Splitting Method

The basic strategy here is to split the flux and eigenvalues into positive and negative
components and apply the one-dimensional splitting to each flux component separately
according to the sign of the associated eigenvalues. This method is known as the flux
vector splitting method.

Consider the two-dimensional flow in the form

3U  of  og

o o Tay T

or

0 (6.2.58a)

ouU oU aU
+ +B— =
or ax ay

0 (6.2.58b)

with the convection Jacobians A and B as related by diagonalized eigenvalue matrices,

A =P'AP, = (6.2.59a)

Ay =P;'BP; = (6.2.59b)

For the one-dimensional problem, we have

ft=f, f =0 forsupersonicflow

ft=0, f-=f forsubsonicflow

and

u—+a
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with
AT =PAP]', A" =P AP}

and similarly for B. The split fluxes are defined by
= =AU g*f =B*U

The general eigenvalue matrix may written as given by Steger and Warming [1980]

A
A= M (6.2.60)
A3
Ag
which will allow the split flux components to be written as follows:
- . -
0 met + a(ha — A3)
f=5 nv (6.2.61a)
L T A2+ A
il +ua(hy — A3} + 222102
L 2 ’Y - 1 .
B M 7
p it
8=5- MV +a(Az2 — \3) (6.2.61b)
Y 12 JrVz Ay + A
n +va(hy — N3) + @223
L 2 y-—-1.
with
’T}=2(‘y —1)}\1 + M+ A3
Rewriting (6.2.58a) in a discrete form for a variable cross section S(x):
At At
n+-1 no _ _ T fex Y o/ * o
Ui~ U = a3 (ff+%,f fz’f%,i) Ay (gf,H% gz‘.jﬁi) (6.2.62)
with
B, =t 8 g, =8+, (6.2.63)

For quasi-one-dimensional problems such as a nozzle with variable cross-section
arca considered in (6.2.50), the solution procedure using the flux vector splitting is
presented below.

a.SuU oSF dS
—t — — —B =90 6.2.64
ot + ax dx ( )

Linearizing the above,

1l 173

OF OF
| A At = F"
T T3

AU =F"+aAU

oB” oB"
B! =B At =B"
+ + U

AU = B" + bAU
ot
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where

F1=pu=U2

22 u U2 UZ
Fomp s p=2 sty (o8- B ) = 4 =00 5

% U 20,
3-v (U}
=2-7 1
5 (U)Jr(v WUy

U
F3=(pE+p)u= L

-1
-y )2 02

The flux vector F can be split into subvectors such that each is associated with either
positive or negative eigenvalues of a.

a—a 4+a =PAP14+PA P!
7] 0 0 0 0O 0

A=AY+A"=|0 u+a 0|+]0 O 0
0 0 0 0 0 u—a

Ff=a'U F =a U, a " =PA"P', a~=PA P!

For M < 1(u < a)

u=>0
u+a=>0 at =0, a" =a
u—a <0

For M > 1(u > a)

u=>0
u+a>0y%, at=a, a =0
u—a >0

The above criteria require that backward differencing (upwinding) be used for terms
associated with positive eigenvalues, whereas forward differencing should be used for
terms involved in negative eigenvalues. Furthermore, the number of boundary condi-
tions to apply are also dictated by the eigenvalues, compatibility relations, and charac-
teristic variables as discussed in Sections 6.2.1 and 6.7.

In order to write the finite difference equations, we return to the governing equa-
tion (6.2.64) and obtain the discretized form

dF
s28 . i[s(m —AU)] dS[B ¥ @AU] ~0

At ax au dx aU
In terms of the Jacobians,
AU dSF dS
S—— —~SAU ——bAU ——— 4+ —B
+ —( ) (bAU) = o T
or

ds aSF dS
sease Sy ]sum-a 28 4]
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Introducing the flux vector splitting, we write

D . o dS ~ . ﬁ

A backward (upwind) differencing is used for a* and F* as follows:

i dS SF dS
—Sa— At—b |[AU = —-At| — — 2°B
SI+At8 Sa— At b] U /_\.t[ Py ]

Introducing the flux vector splitting, we write

ds ds
ST+ At i(Sa’L—FSa_)———b AU = —At —(SF++SF )——B
0x dx
A backward (upwind) differencing is used for a* and F+ as follows:
At _ as
{SI+E[(Sa Saj 1)+(Saj+] Sa; )]—Atab]’}AU
At _ _ as
= —E[(SFT - SF?-]) =+ (SF,'+1 — SF; N+ AIE;BJ'
The above results may be rearranged in the form:
(XAU]'_H + BAU] + ’yAU]'_l =9 (6265)

where

At B
T Ax Sic18),

At N ds
p=SI+ B(S]ajr - S,-aj ) - Ata »bj
J
At
Y= RS
At _ _ ds
5= —K;(SJFT — Sj—lF-;__l + Sj+1Fj+1 — Sij- ) + Afd—x ‘Bj
]
with
AU =U" —U"

Here it is seen that for supersonic flow, a~ =0, making the scheme upwinded with the
diagonal term B being maximum. For subsonic flow, the diagonal term B is still large
with the eigenvalue A~ or a” being negative. The scheme provides a stable solution. A
numerical example for this problem is demonstrated in Section 6.8.1.

6.2.4.2 Godunov Methods

The basic idea of a Godunov scheme is to use the finite volume structure of spatial
discretization (Figure 6.2.4a} and a piecewise constant distribution of the variable u
with the shock discontinuities occurring at each cell interface in order to obtain the
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u
A a a” a a'
NV \/n
u”
t un H‘]
Fo---- ' il |
o :_ 0__1' R n+1 i
o G__oe__) o N
x<0|x>0  x<0|x>0
T T T 1 > T 1 I > X
i1t o0 el i1 i-L i ael e
2 2 2
(a) (b)

Erroneous solution

Sonic transition —)’i —
-0 r Harten and Hyman
(aHIQ )] - - .
correction for expansion

(1) Compression shock (ii) Expansion wave

(©)
Figure 6.2.4 Control volume and piecewise constant distribution of u. (a) Control volume for Godunov
method. (b) Piecewise constant distribution of u at ¢ = nAt. (¢) Compression shock and expansion wave.

exact Riemann solution (Figure 6.2.4b). Here, the dependent variable u may be written

as
At

Wit = — “A—x[f(uwrl/z) — fluiz12)] (6.2.66a)

with the value of u over the volume element given by the average value u;,

1 x+Ax/2

u; u(x,t)ydx

Ax x—Ax/2

and the flux time-averaged at the control volume surface:

f= [ T par

T Ar

As an exact Riemann solution, we note that (6.2.66a) can be reduced to

At

Wt =yl — —~an [ —u} ] fora>0 (6.2.66b)
At

ut =t — —an [}, —uf] fora <0 (6.2.66¢)

with |amax| At/ Ax < 1/2 for stability. This is because the wave can travel at aimost half
the cell.

Godunov’s idea has been extended for improvements by various investigators
including Roe [1981] and Enquist and Osher [1980] among others. One of the most
widely used schemes is the Roe’s approximate Riemann solver. This scheme is described
below.
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Roe’s Approximate Riemann Solver
The original Godunov scheme (6.2.66) may be ap proximated by splitting the Jacobian
a into positive and negative components as

ot - =gt -
Gi-172 =0;_1 —81_12- Qiy1y2 =i 1o =011 p
For a > 0, the upwinding scheme is given by
At
n+l - >
U = uy - Ui = fi-)
with the flux terms split in terms of positive and negative Jacobians,

ficrp = fisr = a; o (i — i)

(6.2.67a,b)
fi— fiap=a,(w —u;q)
Subtracting (6.2.67b) from (6.67a) leads to
i+ fi-r 1 .
ficip = % — *2'|ai—1/2|(ui —ui-1) = [l (6.2.68a)

with the symbol * representing the first order upwind numerical flux at i — 1,2.

Similarly, for ¢ < 0, the upwinding scheme is written as
Af
1
Wt =i — U= )

with
fivip = fi = a (Ui — ;)
fis1 = fivip = aiil/z(“t#l — U;)

from which we obtain

fin+ fi 1 .
fixip = —+12— — Elai+1/2|(ui+l —ui)= flip (6.2.68b)

with * denoting the first order upwind numerical flux at i — 1/2.
Unfortunately, the scheme given by (6.2.67b) above does not recognize the possible
occurrence of expansion wave at a sonic transition identified by

_ g
Givipl = a7, =0, 1,=0

at which the scheme computes as a shock discontinuity that represents a nonphysical
behavior, violating the entropy condition. A remedy for this situation can be found in
Harten and Hyman [1983] in which the following modification is made to (6.2.68b):

a; for |a; > €
lai+1/2| _ | t+1/2| | z+1/2! =", € = max 0’
€ for |a,—+1/2| < €

ai41 — a;
2

) (6.2.69)

Note that for expansion we have € = (1,,; — 1;)/2 and this requires a modification. On
the other hand, for compression (¢ = 0), no modification is needed. This accommodation
will allow a correct expansion wave to develop instead of the nonphysical discontinuity
as shown in Figure 6.2.4¢(ii).
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The expressions given by (6.2.68a,b) can be substituted into (6.2.66a) in the form of
finite volume discretization. This process can easily be formulated in terms of diagonal-
ized Jacobians with eigenvalues and eignevectors for multidimensional Euler equations
as shown in Section 6.2.1. Thus, the first order upwind scheme for the solution of Euler
equations is of the form:

u:?+l = u — _2_;[ z'*H/z — fitl/z] (6.2.70)

with the numerical fluxes determined from (6.2.68a,b).

6.2.5 SECOND ORDER UPWIND SCHEMES WITH LOW RESOLUTION

There are two approaches for the second order upwind schemes with low resolution:
(1) variable extrapolation and (2) flux extrapolation. In each of these approaches, an
additional predictor step may or may not be included. In these schemes it is intended
that the second order upwind approaches lead to greater accuracy.

(1) Variable Extrapolation — MUSCL Approach

In this approach, known as Monotone Upstream-Centered Schemes for Conserva-
tion Laws (MUSCL) [Van Leer, 1979], the variables are extrapolated instead of the flux
terms.

7y =5 [1(0) +1(U8,) ~ ey (U, ~ UL (6271)

with ** representing the second order scheme and
1
UL, = Uit [ = (U = Vi) + (L4 0)(Ui — U)]

1
Uf:% = Uit = [+ Uit = Ui) + (1 = 1)Uz = Uis1)]

where the superscripts L and R refer to the left and right sides at the considered bound-

ary and k denotes a weight (k = —1,0, 1) leading to various extrapolation schemes
Figure 6.2.5a,b).
The final solution is obtained as
+1 *ok ok
Ut =U -1 (fH% - fif%) (6.2.72)

Second order upwind schemes in space and time are obtained with an additional
predictor step

. — 1
UI.L+12 =U; + Z[(l — K)(U,’ — Uf,1) + (1 + K)(Ui+1 — U,')] (6.2.73)
7 n At * *
Ui = Ui - Q—A_x (fi+% - fif%) (62743)

* — 1
U,-Ii; = Uiy — Z[U + k) (Ui = Up) + (1 = &)(Uip2 — Uiy (6.2.74b)
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Figure 6.2.5 Variable extrapolation. (a) Piecewise linear representation
within cells. (b) Linear one-sided extrapolation of interface values for
k=-1.

with * indicating the first order approximation. Thus, (6.2.71) may be replaced by

e N A * (y1R* R* L
T =g 0 (V) + 17 (U)) =ty (7 -2
Finally, we obtain

(i § (ff** T ) (6.2.75)
I—Jy-? [— 3

This is one of the most widely used schemes for capturing discontinuities in capturing

shock discontinuities in compressible flows.

(2) Flux Extrapolation Approach

In the previous approach, the state variables are directly extrapolated to the cell
interfaces. The fluxes at the cell boundaries are then calculated from these values. In
the flux extrapolation approach, the fluxes in the cell are directly extrapolated to the
boundaries.

The extrapolation formulas for the fluxes are the same as the formulas applied to
the variables. A general backward extrapolation of the positive flux is given by

£ =1+ % [(1 — ) (fi- —f ) (14 (fm _ f;;%)] (6.2.76a)

1
2
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whereas a forward extrapolation is applied to the negative part of the flux,

. - 1 . «
fif% =, -3 [(1 +x) (f% - fl-) +(1—x) (fH% . fiH)] (6.2.76b)
Thus, the second order upwind scheme based on flux extrapolation becomes
*x __ oth —f
fu% = fi+% + fz% (6.2.77)

Similarly, as in the variable extrapolation, we obtain the second order accuracy in
time by adding a first integration step over At/2 with the associated first order scheme
(6.2.73). Defining

* | = (U, Uiy) (6.2.78)
i+3
we obtain the numerical flux as

. 1{(1 - K) (fi _fi*_%) n (I;K) (fH-l _f;k+§)j|

i+ i+; 2 2

+ %{(1 ;L K) (1; - f;‘+%) + (1 ; K) (le - f;;%) ] (6.2.79)

Finally,

U;’“:U?—T(fT—fT

1
42 i—3

) (6.2.80)

Unfortunately, the above schemes have had some difficulty; they are unable to con-
trol overshoots and undershoots at shock discontinuities. A remedy is found in second
order upwind schemes with high resolution, discussed in the following subsection.

6.2.6 SECOND ORDER UPWIND SCHEMES WITH HIGH RESOLUTION (TVD SCHEMES)

The most important development in computational fluid dynamics may be the second
order upwind schemes with high resolution, known as the total variation diminishing
(TVD) schemes, pioneered by Godunov [1959], VanLeer [1973, 1979], Harten and Lax
[1981], Harten [1983, 1984], Osher [1984], Osher and Chakravarthy [1984] as reviewed
by Hirsch [1990], which are based on the following physical properties:

» Entropy condition — A decrease of entropy associated with expansion shocks must
not be admitted.

*  Monotonicity condition — This condition must be enforced to prevent oscillatory
behavior in the numerical scheme.

* Total Variation Diminishing (TV D) — The total variation of any physically admis-
sible solution must not be allowed to increase in time.

In general, undesirable gradients, undershoots, overshoots which may occur in sec-
ond order upwind schemes with low resolution may be controlled by providing non-
linear corrections, called limiters, which satisfy the above properties: entropy condition,
monotonicity condition, and total vartation diminishing.
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(1) Definition of High Resolution Schemes

(@) Entropy Condition. The solution of the Euler equations may contain discontinu-
ities of variable gradients involving an entropy increase (or compression shocks) and,
unfortunately, an unrealistic entropy decrease (or expansion shocks) which violate the
second law of thermodynamics. In order to eliminate such undesirable (numerically
generated) entropy decrease or expansion shocks, we must guarantee that

ar < a < day (6.2.81)

where a is the speed of propagation of the discontinuity satisfying the Rankine-
Hugoniot relations and

_dfk A
T du P du
with R and L being the right and left sides of the discontinuity. The requirement (6.2.81)
is schematically shown in Figure 6.2.6, implying that az and a; must intersect along the

surface of discontinuity, resulting in a compression shock. In terms of eigenvalues, the
entropy condition is given by

M(Ur) < a < M(Up) (6.2.83)

ar (6.2.82)

Another treatment of the entropy condition may be given by the smooth and positive
entropy function S(u;) such that

%S
3!4,’8“]'

>0 (6.2.84)

as proposed by Lax [1973]. This is equivalent to the existence of a system of equations
with an artificial viscosity v such that

U, +aU, = vU, (6.2.85)
the solution of which confirms the entropy condition given by (6.2.84) in the limit as the

A

Surface of
discontinuity

ap<a<a;

Figure 626 Intersection of two characteristics @; and ag leading
to compression shock discontinuity.
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artificial viscosity vanishes. In general, however, the satisfaction of entropy conditions
alone may lead to oscillatory motions (overshoots and undershoots) along the discon-
tinuities. Remedies can be found in the concepts of monotonicity and total variation
diminishing, which are described below.

(b) Monotonicity Condition. A monotonicity condition refers to the nonoscillatory be-
havior of the numerical solution. Consider the solution of Euler equation to be in the
form
wt = HQ ol gl ) (6.2.86)

1
This scheme is monotone if H is a monotonically increasing function such that

oH
—(Miks Uimgey1, o Uigk) = 0 (6.2.87)

814]'

foralli —k < j <i+ k, with

1 _ * *
wpt = (fi+§ - fi,%) (6.2.88)
f,:% = g e ) (6.2.89)
The condition for monotonicity is given by
8](::-1 d ::1
— >0, =<0 (6.2.90)
OU; _j41 U g

This represents a severe limitation, resulting in a scheme that is too diffusive. A
compromise is the total variation diminishing concept, described next.

(c) Total Variation Diminishing (TVD) Schemes. As we have seen that the satisfaction of
entropy and monotonicity conditions may still be restricted with oscillatory motions
and excessive damping, respectively, our air now is to look to the concept of total
varlation diminishing to resolve these problems. To this end, we define the total variation
[Lax, 1973] as

du

v— |
d

A numerical scheme is said to be total variation diminishing (TVD) if

dx (6.2.91)

X

TV < TV(") (6.2.92)

Let us consider the semi-discretized system

dui 1 * *

vl O Y (6.2
or

iyl CRLTNES Rt Ty (6:294)
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with
C;F%BMH% = f;:% - fi= a;%(“iﬂ — U;) (6.2.95a)
on) Oy = fi— f7, =a (i —uiy) (6.2.95b)
l—-i I_i ,,i
and
_ fii— f ¥
Chi+C = = =a,. 6.2.
i+3 + i+3 Uil — U BMH_% at+§ ( 96)

To compare the results above with the central scheme, we consider

1 1—
f,:l = —(ft + fiv1) — —Df+%5u,~+z (6.2.97)

where D denotes the numerical viscosity coefficient. Combining (6.2.95) and (6.2.97),
we obtain the wave speeds C o and CJ;] in the form

- 1 —
CH—; = 5(‘%4% - Dg+%) (6.2.98)
1 _
Chy = 3y + Diyy) (6.2.99)
from which the numerical viscosity coefficient becomes
Dy =Cl, - Cs (6.2.100)

Thus the viscosity is expected to be proportional to the difference between the positive
and negative wave speeds.
It follows from (6.2.100) that the semi-discrete system (6.2.94) is TVD if and only if

C ,>0 and Ci_“trls() (6.2.101)

i+ 3

raf—=

Once again from (6.2.94) we obtain, using the sign function S;p1 = sign(du,_ ! ),

d d 1 -
E[TV(M)] = Zsi+%a(ui+1 — ;) = ~ ZS“F% [(C — C+)H_%5”1+%

- +
G uy + CF%Bui_%]

1
= Ax [Sf+1(C+1 - C+ )—S éC +SH_3C+ ]Bu (6.2.102)
- Y i3

The TVD condition requires that the right-hand side of (6.2.102) be nonpositive to
ensure (6.2.101). This condition is satisfied for Sy, +1 =1 and dy, +3 =38u;,_, = 0. Thus,

from (6.2.94) with an explicit Euler method
n A At - - "
= = (c iy —i-Ci_%Bui_%) (6.2.103)
with the CFL-like condition
T (c; €, %) <1 (6.2.104)
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Integrating (6.2.94) and (6.2.102) and combining the results, together with (6.2.101),
we obtain [Harten, 1983],

TV < Z {[1 —7(CY = C)y ) Buy | - ¢ |81, 41 ] +TC;:_,§ |31, .y l}

=) [du, 1| = TV(") (6.2.105)
i
This is the basic requirement for the total variation diminishing.
Note that the second order upwind scheme (6.2.76a,b) with k = —1 can be written
as
du,—

1 1 _ _ _

= —‘Z“A“_x(3fi+ - 4fit1 + f;t2) - m(_?’fi +4fi+1 - fi+2)
at

" 2Ax

dt

30t — 1) — (tioy — 145-2)] — e [B(ttra1 — 1) — (ig2 — Ui 41)]

2Ax
(6.2.106)

in which oscillations along discontinuities may still prevail. In what follows, we shall dis-
cuss the TVD schemes with limiters to achieve accuracy and stability based on (6.2.106).

(2) TVD Schemes with Limiters

The TVD scheme described above may have over- and under-shoots which can
be treated with the concept of limiters [Roe, 1984; Sweby, 1984]. To this end, rewrite
(6.2.106) in the form,

du; a* 1 1
- Ax l:(ui — 1) + E(ui —ui-1) — E(ui-l - u,‘—z)]
a 1 1
= | @i — i) + 5 (i — ;) = 5 (Uiv2 — Uit1) (6.2.107)

Here, the variations in the second and third terms within the square brackets will be
limited as follows:

du; at 1 1
d_tl =~ A [(Mz‘ —ui 1)+ Q\pzt;(“i — i) — ‘i‘pftg(”i—l - “ifZ)}
a” 1 T
— K)_C (u,-+1 — Ll,') + quﬂ-%(ui'*'l — u,-) — quj+%(u1'+2 — ui+1) (62108)

Now the TVD conditions are obtained by rewriting (6.2.108) in the form similar to
(6.2.94),

[~ =

du; at 1 1V
d_[I:_E 1_‘—5\[;;__%’5}‘_'—2 (u,———ui_l)
i_
[ v,
a 1 1 %42
vl LR rfz (Uip1 — 1) (6.2.109)
! 3
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with
T Uiy — Ui M —uj
r.. = > L=
I IR R 7F Trooui -y
Wiyl — U Wiy — U
r,'+1: i+1 l’ rl_]= ;1 i-2
I U — U =3 — Ui
P TR A (6.2.110)
+ Ui — U1 - Ui —Uj_3
F. ; = 5 ¥ 3 =
T U1 — Ui T U — Ui
- Wip3 — Uiy2 = Miy1 — Ui
NI Ui — Wiy T Wy — iy
+ + 4+ U — - -
vi = (). v, = () (6.2.111)
Thus, the TVD conditions are
Wt =14 Lt /S (6:2.112a)
— gt - - 2.112a
27 27, T
=3
1 1 ‘1’19
Yo=14 v~ —1 > (6.2.112b)
2 ity 2 T
pl

It is interesting to note that the basic Godunov’s scheme (6.2.66b) is recovered for
¥+ = ¥~ = 1. With more restricted definitions for the limiter,

(6.2.113)
vo=vi) vy =)
- the TVD conditions (6.2.112a,b) may be written in the form [Roe, 1984, 1985; Swevy,
1984] as

Y ,(:+) —w () =2 (6.2.114a)
-3

v (rif 3 B

L ?) -V (ri+%) =2 (6.2.114b)

which may be generalized in the following form for all values of r and s:

w(r)

—Y(s) <2 (6.2.115)
with the following constraints:
Y(r)>=0 forr >0 (6.2.116a)
VU(r)=0 forr <0 (6.2.116b)

where (6.2.116b) is designed to avoid nonmonotone behavior. Thus, the sufficient
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condition becomes
0<w(r)<2r (6.2.117)

Let us examine the above condition with another scheme such as the explicit second
order Warming and Beam scheme:

ntl

U;

W= —o (i — ) — %(1 — o) — iy + ui)! (6.2.118)
which may be rewritten as

4

W =t — o — 1)) — %(1 o) [q; (r; ) (u; — ui_l)”] (6.2.119)

Using the conditions (6.2.106) and (6.2.119), we obtain

v ()

1 1
+ - _ + .
0=7C =0 il+(1-0) |V (rim%) I <1 (6.2.120a)
i-3
Clpp=0 (6.2.120b)
This requires, for arbitrary values of r and s,
v 2
) g5y < 2 (62.121a)
r 1—-0c
and
v 2
W) - W) 2 (62.121b)

Combining (6.2.117) and (6.2.121), the second order upwind scheme is TVD for
0 < W¥(r) < min(2r, 2) (6.2.122)

with ¥ = 1 for the Warming and Beam Scheme and ¥(r) = r for the Lax-Wendroff
scheme.
Various limiters for second order schemes are summarized below:

(a) TVD regions for ¥(r) in general

(b) Van Leer’s limiter & = ’11'” (6.2.123)
r
. . _ fmin(r, 1) ifr >0
(¢) Minimum modulus (minmod) ¥(r) = { 0 itr <0 (6.2.124a)
x ifjx] <lyl, xy>0
minmod(x, y) = ¢y iflx| >y, xy>0 (6.2.124b)
0 ifxy<0
(d) Roe’s Superbee limiter ¥ (r) = max[0, min(2r, 1), min(r, 2)] (6.2.125)
(e) General B-limiters ¥ = max[0, min(Br, 1), min(r, B)], 1 < B <2 (6.2.126)
(f) Chakravarthy and Osher limiter W(r) = max[0, min(r, ). 1<p =<2 (6.2.127)
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In these limiters, we observe the following features:

(i) Forr < 1l or

i1 — Uy - Ui —u;
Ax Ax

Then set W(r) = r and the contribution u? — u?_| to " is replaced by the
smaller quantity (v}, | — u}).

(ii) If r > 1, the contribution (4; — u;_;) remains unchanged.
(iti) If the slopes of consecutive intervals change sign, then the updated point ;
receives no contribution from the upstream interval.

The limiters as defined above may be applied to numerical fluxes in the form

+
dug 1 1oy 1 () .
@A | Y () s U )
1 Loy 1Y)
-— 1+§q,(,i+%)_§_r;3 (]‘;_Jr%—f,) (6.2.128)
I+3
with
R At U Ly
T D R = (6.2.129)
and equivalently,
_ e
du; 1 1 1V rf-g) n
praiated Rl () R el TR
=3
W r”
1 1 _ 1 (i-&-%) _
- 1+§xp(ri+%)-§—ri_+_— a7, (igs — 1) (6.2.130)

Here itis seen that with redefinition of slope ratios (6.2.129), the limiters are generalized
to nonlinear scalar conservation equations from (6.2.112).

(3) Time Integration Methods for TVD Schemes

So far we have been concerned with the second order space-accurate TVD schemes
only. We are now prepared to discuss integration of the time dependent term.

Recall that there are two types of time integration methods: (1) the combined space
time methods (Section 6.2.2) and (2) separate space-time methods (Section 6.2.3). The
former is more suitable for time dependent problems (time accurate), whereas the latter
are more suitable for steady-state problems (not time accurate).
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(a) Explicit TVD Schemes of First Order Accuracy in Time. Consider the first order time
integration of (6.2.127) in the form

, VirT,
du; 1 1 (ri%)_% Erl-z) (f

a = x|t =)
=z
1 1 1‘1’(}‘;%) . i
T Ax 1+2\IJ( +2)_§_—’1+z (ﬂ+%—ﬁ') (6.2.131)

This scheme without the limiter (¥ = 1) is unstable, whereas the nonlinear TVD version
with ¥ > 1 is conditionally stable, as seen from (6.2.106).
Define the local, positive, and negative CFL numbers,

R _ L
ft+l f;_'_% f‘:_ — fl.+

ol = == (6.2.132a)
+ Uil — U i1 — U
fin = i -
o7, =T =7 Ji = 1 (6.2.132b)
I+3 Uipl — U W] — U
with
.t - _ fi+1 — fl _
Giay SOy T Oy ST Ty T T (6.2.133)
_ fm fi
+
ol 1 = AT u£+1 il =Tlal;, (6.2.134)
and
i Wr
| 1 ()|
+ 3
TG = o, |1+ o (rl_,) R (6.2.135a)
=3
Vir-
_ - 1 1 ( i+%)
W=, |1 () -5 3 (6.2.135b)
i+5
Thus, the TVD condition (6.2.106) with (6.2.114) is given by
_ 1+
T (C:;% — Cl.+%) < T|a|i+% (——2—) <1 (6.2.136)
where
(r)
W(s)—
with 0 < a < 2. The CFL condition for this case is
lo| < (6.2.137)

T 24+
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The stability conditions for various limiters are
: .. 2
minmod limiter: jo| < 3

. 1
superbee limiter: |o| < 5

and so on.

(b) Implicit TVD Schemes. An implicit multistep method for the second order TVD
scheme may be written as

T ( ft - fﬁj’;l) = —r(1=0) (£ - ﬁjﬂ) (6.2.138)

i

Using (6.2.103), we may rewrite (6.2.138) as

(1470 (c 3t +c o) aw == (£, -1, (6.2.139)
or

[14+70(CT —CH]Au +70C Aujpg —70CH = —1 [ f*, — ¥, 6.2.140
i+3 1-5

It is now seen from (6.2.104) that the left-hand side of (6.2.140) is diagonally dominant.
The CFL-like condition is given as

w(1-0)(C;, ,—Cr ) <1 (6.2.141)

2

(c) Explicit Second Order TVD Schemes. Consider (6.2.73) with k = —1in (6.2.79),

_ n Ter o
U = u — —2-8 fi+% (6.2.142a)
Fror = @, Hip) (6.2.142b)
n n 1| —=* 1 " * — " *
Wt = — 18 1[fz'+§ +3%0 (f,— - f;'—%) + qu%(ﬁ“ - ff+%)] (6.2.142¢)
Applying (6.2.142¢) to the linear convection equation, we obtain
+
1 1 (q}fi N 0)
ntl _on - + - 2z 7 N
W =ul—o |1+ 5 (\IJF% o*) ST (u —ul' ) (6.2.143)
i3
with the TVD conditions,
Y —
0< 0[2 +¥(s)—o — M] <2 (6.2.144)
r
where
s=r,, r=r
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and
0<w(r)<QP-0a)+0a (6.2.1452)
0<w(r)< = (6.2.145b)
a

These conditions lead to, for0 <o <1,
W(r) < min(2, 2r) (6.2.146)

It is interesting to recognize that the limited terms in (6.2.142¢) represent the dif-
ference (prior to limiting) between the second and the first order numerical fluxes,
f** — f*, and that this is the antidiffusive flux of the Flux Corrected Transport (FCT)
[Boris and Book, 1973].

Various second order TVD schemes are identified as follows:

(i) Explicit Second-0Order Schemes with Variable Extrapoiation (MUSCL) Approach. Once again,
from (6.2.73), (6.2.79), and (6.2.71a,b), we obtain

At
= = ( i ]‘;7%) (62.147a)
1.
il =+ E\IJL(ui — Ui 1) (6.2.147b)
1.
il =i — YU — ) (6.2.147¢)
; 2

with the tilde indicating monotonicity conditions, leading to

W = (‘ﬁj% - Tj‘j%) (6.2.148)
where

A w  ~ L ~ R

Ty = (k) (6.2.149)

(ii) Lax-Wendroff TVD Scheme. This is an application of TVD to the Lax-Wendroff
Scheme [Davis, 1984; Roe, 1984]. Here, the Lax-Wendroff numerical flux,

oy = 5 Uit fiot)

is transformed into an equivalent flux split form by decomposing the fluxes and the
Jacobians into their positive and negative parts,

1 1
*(LW) _ £t - z + + _ = - -
AL IS AT W (1+T,4j+%)afi+% : (1+1Al_+%)6fi+% (6.2.150)
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Thus, the TVD Lax-Wendroff scheme becomes

*( LW) — 1 1
fi-l—% |TVD =+ §q}(r+_) (1 N o*;;%) 8]:':%

1
i3

1 1 _ _
‘5“’(r— )(1+01-+%)6fi+% (6:2.151)

)
l+§

where the symmetry property

Y0 _y (1)
r r

is utilized. Note that the presence of the functional dependence on r; 3 /2 18 required,
leading to a five-point scheme to satisfy the TVD and second order accuracy conditions.

(iii) Harten’s Modified Flux Method. The first order upwind scheme has a truncation error
h, such that

u+ fo+he = (6.2.152)
with
h = AtB(u)u, (6.2.153)

Equation (6.2.152) represents a second order approximation to u, + f, = 0. For the first
order upwind scheme,

. 1 1
fi+% = —i(ﬁ + f,’.|.1) — §|a|i+%(ui+1 — Lli) (6.2.154)
the truncation error becomes
A A
h = TXIal(l —7Tla|)uy + O(sz) = z—xlo*l(l — o Du, + O(Ax?) (6.2.155)
T
Thus, the numerical flux for (6.2.152) assumes the second order form,
1 1 1
iy = Ui+ fiv) + 500 4 i) = Sla + bl y (i1 — i) (6.2.156)
with
Wip1 — ;. higg+h
iy = lalyy (1= ol ) = = . (6.2.157a)
hi - hi
by = - (6.2.157b)
2 Ui — U
This scheme is TVD with
Tla + bli+% <1 (6.2.158)
and

h; = min mod (hl.f%, i) (6.2.159)
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(d) Artificial Dissipation and TVD Schemes. Let us rearrange (6.2.151) in the form

1o = (f + fie) - |a|z+1 (i1 — 1)
+ E[\Iﬁ(l —oNat =¥ (1— cr")a*]i%(ui“ —u;) (6.2.160)
where

Yta~ =0 or ¥Tf =0

6.2.161
Y at=0 or W f"=0 ( )

Thus _
1y = U+ fien) = 31l (s = )
+ 5(\11+ + 91 -ocMat - (1+ o )a Jip (i —u;)  (6.2.162a)
or
T g = U+ fin) = 31l s = )
+ z(\lﬂ‘ +¥)lal(t — o D1 (i — wi) (6.2.162b)
Written alternatively,

*(LW)
fi+%

‘TVD (f + fir1) — TaH_l(uH»l U;)
+ §(W+ + ¥ — 1)[|a|(1 — 10'|)]i+%(u,'+1 — ug) (62163)
Comparing with (6.2.49), W* are identified as

D,

i+

= —(1 — ¥ —w)lal(l - o)) (6.2.164)

NI—

Similarly, a TVD MacCormack scheme is given by

=uw; —1(fiqn = £
—(f, = Fi_) (6.2.165)

1 N
= E(ﬁi + 0 )+ T[Di+%(ui+1 — ;) — D, (u; — u,»“l)]

= =

<

Although the artificial viscosity of the central schemes is analogous to the TVD schemes,
accuracy and efficiency of the TVD schemes have proven to be superior.

In summary, the TVD schemes, although capable of resolving shock waves, are not
uniformly high order accurate. They are reduced to first order accurate at local extrema
of the solutions, while maintaining second order accuracy in other smooth regions.
To circumvent this difficulty, the essentially nonoscillatory (ENO) schemes have been
introduced. This is the subject of the next section.
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6.2.7 ESSENTIALLY NONOSCILLATORY SCHEME

In the previous sections, we have studied low- and high-resolution schemes of Godunov,
MUSCL, and TVD. In this section we examine a generalization and extension of these
schemes, leading to a uniformly high order accurate essentially nonoscillatory scheme
(ENO) as advanced by Harten and Osher [1987], and subsequently by Shu and Osher
[1988, 1989], among others.

In the ENO scheme, high-order accuracy is obtained, whenever the solution is
smoothed by means of a piecewise polynomial reconstruction procedure, yielding high
order pointwise information from the cell averages of the solution. When applied to
piecewise smooth initial data, this reconstruction enables a flux computation which is
of high order accuracy, whenever the function is smooth, and avoids nonconvergence.

Initially, ENO schemes were developed in terms of cell averages conducive to FVM
applications, followed by numerical fluxes for FDM applications with TVD Runge-
Kutta discretization. These two types of ENO schemes were compared and evaluated
by Casper, Shu, and Atkins [1994]. Recently, the ENO scheme has been extended to
the Navier-Stokes system of equations [Zhong, 1994] and to unstructured triangular
grids [Abgrall,1994; Suresh and Jorgenson, 1995; Stanescu and Habashi, 1998], among
others. The basic theory of ENO is briefly summarized below.

The purpose of ENO is to achieve uniformly high order accuracy by avoiding the
growth of spurious oscillations at shock discontinuities known as Gibb’s phenomena.
To this end, we employ piecewise polynomial reconstruction in the numerical solution
based on an adaptive stencil. Such stencil is chosen according to the local smoothness
of the flow variable.

Although ENO schemes have been applied to multidimensional Euler and Navier-
Stokes system of equations, we illustrate the procedure using one-dimensional hyper-
bolic conservation law,

oU oF
— 4+ — =10 6.2.166
at + ax ( )

For simplicity, we consider a one-dimensional scalar function and reconstruct the point
values u(x) of a piecewise smooth function u from its known values of cell average u;.
x+1/2
7 = f w(E)de (6.2.167)
X

—1/2

with A; = x;.1,2 — X;_12. Let us now reconstruct u(x) from #; by interpolating the prim-
itive function U(x),

Ulx) = f u(€)dg (6.2.168)
X0
The point value of the primitive function at x = x; > is given by

Uiap =Y Tk, (6.2.169)

i:i[)
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Table 6.2.2 lllustration of Divided Difference
xk A% AY(1% divided difference)  AZ(2" divided difference})  A3(3™ divided difference)
o ox U
U -
11— o NI
e AU, — AT
poox U et N
o 20, — A2U
UZ_Ul:AU; AU — 0 _ AP
o h Alh — AU B
P2 X2 Uz ——-2————1 = A2 U1
U — U X3 — X
3 2 _ AU,
X3 — X2
Py ox3 Us
Since we have
d
u(x) = o_i—U(x) (6.2.170)
X

it is now possible to obtain a piecewise polynomial interpolation function H,(x, U) of
degree m by interpolating the point values of U/, from (6.2.169) and arrive at the
reconstruction polynomial of the form
(x, U)

R(x, ) = Ed_ (6.2.171)

x m
where, for cell x;_1,; and x; 1,2, H,(x, U) represents the mth degree polynomial that
interpolates the values of U 1/, at m+ 1 successive points xj,12(jm < j < jin +m)
including x;_1,» and x;;,2. Thus, our objective is to choose a stencil with H,(x, U)
being the smoothest. This can be extracted from a table of divided differences of U(x)
such as shown in Table 6.2.2.

The one-dimensional ENO reconstruction described above has been extended to
two dimensions via primitive function [Casper, 1992]. The cell average can be carried
out as follows:

1 n+1/2
U;,=— U;(x)d 6.2.172
N 12 j(x)dx ( )
with
. 1 »+1/2
Ui(x) = — f Ulx, v)dy (6.2.173)
AY i Jy-1p

Recently, applications of ENO to the Euler equations in unstructured triangular
grids have been reported by Abgrall [1994], Suresh and Jorgenson [1995], and Stanescu
and Habashi [1998]. The reconstruction via extrapolation allows the selection in one
step of all of the cells in the required stencil for each cell. For an rth order-of-accuracy,
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the approximation polynomials of degree m = r — 1 are written as

m
RlU A=) Y apX'Y* (6.2.174)
p=0 j+k=p

Here, we have M = (m + 1)(m + 2)/2 unknowns, requiring a stencil of M cells to build
the interpolation polynomial.

The ENO reconstruction such as given by (6.2.174) can be used to compute fluxes
so that the solution procedure of any scheme presented in the previous subsections will
be followed.

6.2.8 FLUX-CORRECTED TRANSPORT SCHEMES

The flux-corrected transport (FCT) scheme was originally developed by Boris and Book
[1973] and subsequently generalized by Zalesak [1979] in which monotonicity is assured
in multidimensional problems. The basic idea is to combine a high order scheme with a
low order scheme in such a way that the high order scheme is employed in smooth regions
of the flow, whereas the low order scheme is used near discontinuities in an attempt to
obtain a monotonic solution. The following six steps are used for the solution.

(1) Compute F[ﬁl 12> the transportive flux given by some low order method guaran-
teed to give monotonic results.

(2) Compute F// 12> the transportive flux given by some high order method. This
flux 1s mathematically more accurate, but can lead to physically unacceptable
ripples in the solution.

(3) Compute the updated low order, transported and diffused solution,

.Y
Ul = U° - A—)Q(Ffil/z _ Ffel/z) (6.2.175)

(4) Define the antidiffusive flux which becomes the amount of the monotone trans-

portive flux that we would like to limit before correcting the transported and

diffused conservation variables of step (3).

F}Ifl)/z = FJEI/Z - Fiﬁ-l/z (6.2.176)

Limit the antidiffusive fluxes Fi’il n

overshoots and undershoots which also do not appear in U,

so that U" as computed in step (4) is free of the

Fp=CapFll, 0<Cup=st (6.2.177)

I

Apply the limited antidiffusive fluxes to get the new values U,

. At
Ur = U - B( FS,— FC 1/2) (6.2.178)
Note that if F[il 2= Fiill)/z for Ci;1/2 = 1, the U;" reduces to the time-advanced higher

order method without the required monotonicity correction.
The procedure described above can be generalized to the two-dimensional case,
At

u, =u; - ?[(Fx)i+1/2.j ~(F)icipp g+ (B2 — (Fyij-12] (6.2.179)
y
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where A; ; is the two-dimensional area element centered on grid point (i, j). Here, two
sets of transportive fluxes F; and F) are treated as follows:

a. Compute (F; )z+1/2 ; and (£, )k by a lower order method.

i ]+]/2

b. Compute (F, )1+1/2] and (F, )1 i+1,2 by @ higher order method.
c. Compute the prev10usly updated low order, transported and diffused solution.

UzT]D = U, — [(F )1+1/2, (FOL 12, T (Fy ) 2 — (Fy )1] 1/2]

(6.2.180)
d. Define the vector components of the antidiffusive fluxes
H
Fz+1/21 - (F )i+1/2] E+1/2] (6 9 181)
FA][il/Z (F )z+1/2] tL/+l/2

e. Limit the antidiffusive fluxes so that there are no overshoots or undershoots in
U, of step (f) below that do not appear in U/"; of step (c).

C AT
Frip;=CupiFlp;, 02Chp; =1 62180
FC =Cip FAL . 0<GCipn; <1 (6:2.182)

12, = S22 58 12 SN2 =

f. Apply the limited antidiffusive fluxes to get the new values U’

™ c C C c
(]’nl = l]i,) 144 [FL—H/ZJ Fi—l/2,j + F1 Ji+1/2 F}_j,]/z] (62183)
Here, it is important to limit the antidiffusive fluxes FAT i41/2.; and FAT "i+1,2 by choosing

the cell-interface flux-correcting factors C;;; and C; ;1 such that the combination
of four fluxes acting together, through (6.2.183), does not allow U, to exceed some

maximum value U/ or to fall below some minimum value U["}‘“ It should be noted that
determination of suitable values of flux-correcting factors C; | ; and (; ;,, is analogous
to the TVD limiters. There are many possible ways to determine these limiters, as
suggested in Zalesak [1979].

6.3 NAVIER-STOKES SYSTEM OF EQUATIONS

Diffusion processes due to viscosity and thermal conductivity are characterized by the
Navier-Stokes system of equations. As the Reynolds number increases, boundary layers
are formed and the laminar flow undergoes a transition toward turbulence. In high
Reynolds number and high Mach number flows, shock waves and turbulent boundary
layer interactions are most likely to occur. Furthermore, diffusivity due to chemical
reactions also adds to the complexity of governing equations and computations. In
general, such physical properties make the length and time scales of the variables widely
disparate, thus causing the resulting algebraic finite difference equations to become
“stiff.” The subjects of turbulence and chemical reactions will not be discussed until
Part Five.

Although implicit schemes are used predominantly in dealing with stiff equations
for compressible viscous flows, explicit schemes have also been used in relatively low
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Reynolds number flows. In this section, some of the prominent explicit and implicit
schemes are discussed, followed by the flowfield-dependent variation methods.

6.3.1 EXPLICIT SCHEMES

The compressible viscous flow in its most general form was presented in Chapter 2. An
expanded form in 3-D is shown below, but without source terms.

U JA 0B 8_(3

- + =0 6.3.1
ot tox 9x T3y ay 0z ( )
with
[ p ] i pu ]
pu pUt + p — Tyx
U= pv A= PUV — Tyy
pw PUW — Ty
LpE ] | (pE+ plu —umy — VTxy — WTxz + Gx
_ oV _
PVU — Ty,
PVW — Ty,
| (pPE+ P)V — Utyy — VTyy — WTy; + G
= ow Z
pwu — Tzx
C= PVW — Ty
pw? + p — 1z
_(pE + plw — Uty — VTzy — WTgz + Gz

2 28u v dw 2 28V u ow
xx — = U Tyy = 3 O )
T3t Ty a2 w =3 %5y T ax T 8z

3"\ 70z ax By
u odv Ju Jw Jw Jdv
Txy = W 5‘)‘} i Tyx, Txz =M 55'1'5_ =Ty, Tyz = _é; Py Tzy
aT oT aT
= —k— = —k—, = —k—

In terms of a curvilinear coordinate system (&, m, {} (see Section 4.6), equations
(6.3.1) are transformed to

0 (U d d[1
a (_) PY: |: ('ExA + ‘EyB + ‘Ezc)] o l:'j(nxA + T}yB + T]zc)]

+ ol Searipro) <o (632
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with

J =[xe(yzy = yeam) = xn(Vezr — ¥i2e) — ¥ (VeZy — yaze)]™

& =J (i — Y 2y), & = —J (xqzg — Xy 2n), & = J (xqy, — X ¥n),
=S (veze — yeze), =Tz —xgze), M= —Jlrgyp — x¥e),
=Tz —mze),  G=—T(zg—xze), L= J(xyy — X))

2
Txx = gM[z(éxug + Nxlty + Celtg) — (ﬁng + MV -+ gyVZ) - (‘Ezwé + Mpwn + Ly )]

2
5“‘[2(‘%};\’& + MNyvy + Cng) - (Exug + Ml + Cxu?;) - (‘Ezwg + Mwy + Czwé )]

Tyy =

) .
Tz = gl-’-'[z(gzwi + nw,, + Czw(;) - (&xué + Muldyy + Cxué) - ('Eyvé + My + CyVQ )]

Ty = P&t + Myt + Cytag + Ecve + MoV + Leve)

Tez = P(Eattg + Mot + g + Eewy + Mewy + Lowg)

Tyz = W(EVe + My + LV + Ewe + Mywn + ywy)

g =—k&T+n T+ L), go=—-KE&T + T+ L T),
g =—k(& T + T+ L Ty)

Equations (6.3.1) and (6.3.2) are mixed sets of hyperbolic and parabolic equations
in time. If the unsteady terms are dropped, then a mixed set of hyperbolic-elliptic sys-
tem results. As a consequence, the compressible Navier-Stokes system of equations
are normally solved in their unsteady form using the time dependent approach, in
which the equations are integrated forward in time until either the desired time is
reached or a steady-state solution is obtained asymptotically after a sufficient num-
ber of time steps. If only the steady-state solution is desired, an implicit finite differ-
ence scheme can be used, where fewer iterations are necessary. If time accuracy is
required, then a second order accurate explicit scheme may be used with small time
increments.

Explicit schemes include the leapfrog/DuFort-Frankel method, Lax-Wendroff
method, Runge-Kutta method, MacCormack method, among others. Highlights of the
explicit MacCormack scheme [MacCormack, 1969] with predictor and corrector steps
are presented below.

Predictor
At At At
n+l _ yin = n AR _ = n o = n "
ijk = VYijk Ax( it1.).k Ai.j,k) Ay( i j+lk i./,k) AZ( i j k1 Ci.j,k)
(6.3.3)
Corrector
1 At At
1 1 1 1 1 1

Ui = 3 [Vl Ul = 5 (A = AR — 5 (BT — B

At — -
- A_Z(Ci,?lkﬂ - tjlk)] (6.3.4)
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with x = iAx, y = jAy, 7 = kAz This explicit scheme is second order accurate in both
space and time, and useful for time accurate calculations or problems with low to moder-
ate Reynolds numbers. Although forward differences are used for all spatial derivatives
in the predictor step while backward differences are used in the correction step, the for-
ward and backward differencing can be alternated between predictor and corrector
steps as well as between the three spatial derivatives in order to eliminate any bias.
Unfortunately, no analytical stability analysis is available to determine limiting time
step requirements because of the nonlinear nature of the governing equations, but the
following empirical formula [Tannehill, Hoist, and Rakich, 1975] is proposed.

At < o (Af)crL
1 + Z/RCA

witha 0.7 - 0.9

(At)cpL < L@+M+M+a ! + ! + !
L =1 Ax Ay Az Ax? Ay AZ

Rea = min(Res,, Reay, Reas) > 0

VIA
ReAx = » ReAy = pl | ya ReAz =

18 M 1

It is often necessafy to add artificial viscosity using the fourth order derivatives of
the form,

(6.3.5)

-1

plwlAz

GM )
—E(AX; AXj AXAX ) ——————— 6.3.6
( K OXAAX )Bxiaxjaxkaxm ( )
where ¢ is an experimentally determined parameter.
For high Reynolds number flows (thin viscous layers), the mesh must be refined
(small time steps), leading to long computer times. To circumvent this difficulty, implicit
methods may be used. We discuss this subject in the following section.

6.3.2 IMPLICIT SCHEMES

Earlier developments of implicit schemes for the Navier-Stokes system of equations
include Briley and McDonald [1975], Beam and Warming [1978], and MacCormack
[1981], among others. First, let us consider the Navier-Stokes system of equations in the
general form

at  ax;  Aax;

0 (6.3.7)

Here, 1t is assumed that the convection and diffusion fluxes are functions of the conser-
vation flow variables U. In addition, the diffusion flux is assumed to be a function of the
gradient of conservation flow variables. These functional relations are characterized by
the convection Jacobian a;, diffusion Jacobian b;, and diffusion gradient Jacobian ¢; i

8 86, 0G;

— At ? | — Taxa ij = 7 638
aU fT U T U (6.3.8)

a
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To evaluate the Jacobians, we set new variables £ = pu, m = pv, e = pkE, and pg =
A + 2. for two-dimensional flows,

U] p P
U= U2 _ pu _ £
U3 pv m
| Uy | pE e
R en ] ¢ ,
e | F ] et | P+
e Ff B puv B tmfp p
LF4_ | pEu+ pu (p-}—e)g
- _ B 1
F} pv ] m
. F; pvu tm/p
ENR| T prev | TP M
m
| £ LpEv+ pv_ (p+e);
where

p=(r-p(E-3viv)=(y - p| B 500 )] =6 -ne- o)

1 1 1 1 1 1
T = C—V-(E— EVl‘Vj) = E[E— i(uz +V2)} = vy [6 — 5‘;(52 +m2):|

The convective Jacobian a; can be evaluated as

[oF! oF 9F 9F]
U, al, Vs Al
dF? 9FF OFF OF
W aU 8l ol 90U
'T B0 T | aF? BF} 9F OF]
au, U, aUs Uy
dF 9F' aF} oF
L8l alh dUs 3l |
oF,
a1 = —
oU
" 0 1 0 0 ]
-3 ~1
72 u2+Y2 v? (B—)u —(y=Dv v-1
- —uv v u 0
1—
L—Ypﬂ+(7 — Du(’ + %) ?*TYWW) (1—yuv  vyu
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4 JF;
P BU
[ 0 0 1 0 ]
—uv v u 0
= -3 -1
TV —(y = Du 3~y y—1
ev e 1-
—W—p~+(y —Dv(? +v*) (1 —v)uy % +Ty(3V2+M2) YV
(6.3.9a)
Similarly, the diffusion terms with their Jacobians are of the form
G! 0 G} 0
G* T11 G; 21
Gi=| \|=- Gy=| 2|=-
Gy T12 Gy T22
G} U+ TV — ¢ € T2l + T2V = @
0 0 0 0 0 0 0 o0
bl—@ _ by by by 0 by — 3Gy b3, by by 0 (6.3.9b)
COU By by, by 0| TTT U By b, by O -
by b by by b b bl by
with m = pu, mp = pv
by = 1 (*‘P«le 1 —?\mz2+2p~lep'1 +2}\mzp‘2) bl =MP | b= AP 2
21 p2 - , 0 o 2= 7P U= 5P
m m
Bly= - (—mz.l —my s 4202 49 zp’l) bl =52 by = =
p P p p P

1 k
b}n :ub%1 + Vb§1 - p(mmz + myTp) + e [—(p E).1 + 2um;

v

+2vimy 1 + (2E —3u® — 3v)p 4]

T11 k
bfn = — F + uby, + vhi, + o7 [—r1 + 2up 1]

v

T12 k k
bin=— — +ubly +vbly — ——[—my1 + 2vp 1], = ——p1
43 0 23 BT 03 : Mba = 5. P

vV v

1
by =b}, by =by,, b=b, b} = F(Mnl,l + MR + RUP | — LRVP 2),

A
2 2 KR

by=—=p1. b= "—3pa
p p

1
by =ub3, + vbi; + p(mmz + moTy) — 7 [~(p E) 2 + 2um 5

+2vmn oy + (2E — 3u? — 3v*)p 4],
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T12 k
by, = s +ubly — b5, + oZc [—my2 + 2up 2],

v

k k
Blo= — 2 4 ubd bl — —a +2vpa], bl = ——
43 o 73 33 ZCV[ 2.2 pal, by pzc.,p’z
The diffusion gradient Jacobians are evaluated as
"0 0 0 0 0o 0 0 0
T g 00 o G _ ap 0 o3 0
DT T el 0o O PThu, el g 000
1no 1 11 12 12 12
| €41 Ca2 6}13 C4z1; _6311 5 ¢35 O
0 0 0 0 [0 0 0 0
o _ 3Gy _ G 0 g 0 G _ Z 2 0 0
PTouy T |G o 000 P70, |Gl 0o 0
1 21 » 2 2 .2
KRR A KT o e
(6.3.9c)
with
nt K
d=-CurnT d=Carns, di=-elE A=t
2 2 2 2
ms k e m;+
o =—Cp +7\)———P~—+ (——2+——1 3%)»
p? o\ p p
k " k ny k1
cll ZPJJF)\__)__’ 11-(#’«*—)——, -t
42 ( Cy pz €43 c, p2 44 P
12 : 12 A 12 m K
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12 ny 12 nmy
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21 my
C l o 2 _}\ Ca=H—:
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22 1 > 22
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An extension to three-dimensional flux Jacobians follows the similar procedure.
The 3-D convection, diffusion, and diffusion gradient flux Jacobians are presented in
Appendix A.
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A typical implicit scheme may be constructed by linearizing the convection flux,
diffusion flux, and diffusion gradient as follows:

Fn
Fin+1 — Fln + (r;[} AUn+1 — Fn + af nAUL (63108)
IGy IG!
G'' =G!'+ g AU+ +og AU =6 AU 1 AU (6.3.10b)
-]

An unsteady implicit scheme for (6.3.7) can be represented as an average of the
flowfield between the current and previous time steps,

AU 1| /oF:  8G,\" [aF; 8G;\""
=—-||—+— — 6.3.11
Af 2 l:(axi + Bxl- ) + (3)61' + ax,- ) ( )
Substituting (6.3.10) into (6.3.11) and using the relation,
CijAU’j = (C,;j AU)‘]‘ — C,’j’]‘AU (6312)

it follows that

At 9 3%c;; 1" oF, aG,\"
I+ —|—(a; +b;, —¢ ! AU = A = —) 6.3.13
{ T Z[Bxl-(aJr c”)+8,8x,:] } (8x5+8x,- ( )

Although (6.3.13) can be used for general applications, it may be modified speci-
fically for ADI procedure, leading to the so-called Beam-Warming scheme [Beam and
Warming, 1978], described below.

For simplicity of notation, let the Navier-Stokes system of equations be written as

aUu dF; 9G;

— =W, W=-—
ot ox; ax;

The Beam-Warming implicit method begins with an introduction of implicitness
parameters € and 0 such that

Ait[(l +E)AU™ — EAU"] = 0W"™! 4 (1 — )W” (6.3.14a)

with 0 < (£, 0) <1, AU = U™ —U” and AU" = U" — U™, Equivalently, we may
write (6.3.14a) in the form,

(6.3.14b)

At AU
AU”+1=———1+£[ (AU + U™ + & U]

Using the linearization procedure of (6.3.10) in (6.3.14), we obtain
1 a n+1
E[(I + ﬁ)AU’H—l —EAU" | =-06 lig(agAU + b; AU + CijAU'j)jj

or
AL 3% 1"
| a +b; —¢ AU
{ * +‘E|i ( T c11)+a a :I}
£ At (3F;,  3G;\"
= —AU" - — 6.3.15
I 1+e(ax,-+axi) (63.15)
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At this point, we anticipate difficulties handling the cross derivatives of the viscosity
terms in the ADI procedure. Therefore, the diffusion flux terms are separated into two
parts: normal derivatives and cross derivatives so that the differentiation of the diffusion
gradient Jacobians is performed only for normal derivatives, whereas the cross deriva-
tive Jacobians on the left-hand side are excluded from the (n + 1)th step in (6.3.15).
Furthermore, the 6 terms on the right-hand side are to retain only the cross derivatives
(shear stresses) and allowed to lag to the n-1 step explicitly. With these arrangements,
(6.3.15) is rewritten as

oAt [ 9 2%¢; 1"
{I+ —[—(a,» +b; —¢j )+ d—’] }AU”“

1+&[ox X;0x;
-1
_ & g AL (OF 96" A 3G (6.3.16)
1+§ 1+§ dx; ax; 1—|~§ 8)C(j) e

with (i) # (j). Here, it should be noted that in Beam and Warming [1978] the cross
derivative terms alone become associated with the implicitness parameter 6 at the
(n — 1) step. This will allow (6.3.16) to be solved in two steps in the spirit of ADI with a
block tridiagonal form. In step 1, seti = 1 and j = 1,2 in the x-direction with only the
normal derivative Jacobians (c; of ¢;;) retained on the left-hand side. Step 2 is to set
i =2 and j = 1,2 with only ¢, being involved in the y-direction on the left-hand side
and place the solution obtained in step 1 on the right-hand side to determine the final
solution. In this process, the diffusion gradient Jacobian components, ¢;> and ¢, are
never used, contrary to the general case of (6.3.14). Expansion of (6.3.16) as described
above leads to the following expressions.

O0Ar | 0 32(!1] 0 82(322 :
I+ ——| — by — — b, — AU
{ +1 +§[ax(al +hi -+ 7+ ay(az + by —e22) + 57 } }
=RHS (6.3.17)
£ At BA? [any aTyx]”
RHS = ——AU" - "
1+¢ 1+¢ 1+&[ dx 9y
1
+ 0O [(e ~5- g) AL, At3]
with
i 0 0 0 07
4 4
), (), 0
bl —C111 = B Vi x 0 X hx 0 (63183)
4 4
_—uz(gu)x — Vs u(gp«)x v 0
i 0 0 0 0]
—Uphy By 0 0
1 4 4
bz — €y = — -V gp" 0 gp" 0 (6318b)
p y y
4 4
—Vz(gp.,) — Uty Upy vIhy 0
L v -
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The solution of (6.3.17) is carried out in the manner of an ADI scheme as follows:

Step 1
oAt [ 8 3%en 1"
{I + m [5(31 +b —ci1)+ 8;121] ] AU* = RHS (6.3.19a)
Step 2
0Ar [ 9 82¢x " nel .
I+ m 5(32 + bz - CZZ.Z) + 3y2 AU =AU (6319b)

where it should be noted that the substitution of (6.3.19b) into (6.3.19a) is equivalent to
(6.3.17), but with additional higher order terms which may be neglected. This approach
is known as the approximate factorization [Beam and Warming, 1978].

For assurance of convergence, an explicit artificial viscosity of fourth order deriva-
tives (6.3.6) may be added to the right-hand side of (6.3.19a). Furthermore, implicit
second order derivative artificial viscosities may be added to the left-hand side of
both (6.3.19a) and (6.3.19b) in the x- and y-directions, respectively. The stability anal-
ysis by Beam and Warming [1978] shows that £ > 0.385 and 6 = 1/2 + £, leading to
0.639 < 1% < 0.75.

The Beam-Warming scheme has been used successfully and many improvements
have been reported for the last two decades. An important question still remains.
That is, dominance of implicitness or excessive artificial dissipation enforced uniformly
everywhere in the flow domain must be adjusted according to the actual local flow
physics such as inviscid-viscous interactions, transition to turbulence, shock wave bound-
ary layer interactions, etc. This subject will be presented in the flowfield-dependent
variation (FDV) methods in Section 6.5.

6.3.3 PISO SCHEME FOR COMPRESSIBLE FLOWS

Recall that in Section 5.3.2 we discussed the PISO scheme for incompressible flows.
We demonstrate here that a similar procedure may be followed for compressible flows
except that an additional corrector stage must be incorporated because the coupling
between the momentum, energy, and pressure (continuity) equations involves the den-
sity and temperature [Issa, Gosman, and Watkins, 1986].

We begin with the continuity, momentum, and energy equations using the notations
given in Section 5.3.2.

1 H n n

@ e+ pvi) T =0 (6.3.20a)
1 A

A—[[(PVJ‘)"+1 — (pvj)"] = =8t = pii! (6.3.20b)

1 n i n
Zr-[(pE)"“ = (PEY' ]+ (pEv) T = —(pvi)7 — (mjwi)! (6.3.20c)
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The predictor and corrector steps are as follows:

(a) Momentum Predictor

(D) nn

% A\, +(N) PV
O L T Y onvr) = — 8K ny
(Ar + pn (p 13 ) l/ i p,] + At

(b) Momentum Corrector I

(D)
8’] ( *V**) *(N) * + an};
At Siji” =P At

Subtracting (6.3.22) from (6.3.21) gives

(D) —1
P * 8’] Al'i
prviT—p"V; = _(E +—) PP

Writing (6.3.20a) in the form

Kk _ 1 * n
(pvi")i == (0" = p")

Differentiating (6.3.23) and using (6.3.24) we obtain

(Dyy !
Sff Al'f * n n ok 1 * n
(E‘*‘“;)"n— (p"=p"if =@"V),+ At(p —-p")

Y]
Introducing the equation of state in the form
p*=pro(p". T
it is seen that (6.3.25) combined with (6.3.24) leads to

(D)
i * n n’ Tn * i) R, %
(z’t+ p’ ) (p*— P ______d)(pm )(p ="y ="},

J
from which p*, p*, and v7* can be solved.
(c) Energy Predictor
pn En
At

1 B(D) ” *(N) * o dok Fox
T (p"E)y=—(pEvi); " —(p'VI)i + (mivi™)i +

with B(?) being the diagonal components of the convective terms.

(d) Momentum Corrector II

(D)
§71 _ A ( *k ***) **(N) p*fk + an,}
At Sija - At

(6.3.21)

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)

(6.3.26)

(63.27)

(6.3.28)

(6.3.29)

(6.3.30)
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(D)
6!] ]t *k *y d)(P*,T*) ok sKkok Kk *
[(Aﬁ p*) (p p),z] — = e V(P = )
J

AD) * _ n
_ (81] + i ) (S**(N) S*(N)) A;’i (p P ) V;k*
At p* p"

+ LB, T = a(p" T (63.31)
with
p™ = pTd(pt, T) (6.3.32)

Now (6.3.31) can be solved for p**, whereas p ** and v}** are calculated from Eqs. (6.3.32)
and (6.3.30), respectively,

(e) Energy Corrector
The energy equation is updated in the form

1 B(D) Aok Lok #x(N) KRR Fkok ann
(At e )(p E¥) = —(pEv)) " —(p™vi™), + (Vi) + A (6.3.33)
from which E**, v¥* and T** are evaluated.
() Momentum Corrector II1
This is the final step for all variables:
Momentum Equation
(D) Ny 1
81” A Hokok _kokokk ko N EE T p Vi
(A_ft_ pj:* (p™*V! )=_Sz'j.i( ) _ P +sz (6.3.34)
Continuity Equation
Hokok kkkky T okk R
(™ Vi) = ——(p p") (6.3.35)
Pressure Equation
(D)
81] ]l *oxx *% d)(p** T**) Hx
[(At+ . R - B = p)
W
8{ (D) (N) ) p** pn
Ji deokk Fx{ N - Fkok
(A][ + p** ) (Ski.k - Ski,§< ) - Afi ( ph )Vi
-f
p** *% *k n H
+ e T7) = &(p", T7)] (6.3.36)
with
pTT = PP, T) (6.3.37)

It is seen that p™* can be solved from (6.3.36) with p*** and v;** determined from
(6.3.37) and (6.3.34).
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6.4 PRECONDITIONING PROCESS FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOWS

6.4.1 GENERAL

For the analysis of compressible flows, it is possible that some regions of the flow domain
such as in the boundary layers have low speeds and thus are incompressible. As a result,
the density-based formulations in terms of conservation variables may suffer extremely
slow or nonconvergence of the solution. This is due to an ill-conditioned system of alge-
braic equations contributed by the stiff eigenvalues of convection terms. The reason for
this is that the acoustic speed is so much higher than the flow velocity in incompressible
flows. This phenomenon then appears to be numerical, but it is important to realize
that actually physical aspects of the fluid flows precipitate such numerical disorder. For
example, transitions and interactions between inviscid/viscous flows induce physical
disturbances or instabilities, which may then contribute to transitions and interactions
between laminar and turbulent flows and/or compressible and incompressible flows. We
address the subjects of transitions and interactions between different properties of fluid
flows in Section 6.5 on flowfield-dependent variation (FDV) methods. In this section,
our discussion will be limited strictly to the numerical aspect of the transition from the
compressible flow to incompressible flow or vice versa. Our objective is to begin with
the density-based formulation and subsequently by providing the preconditioning ma-
trix to the time-dependent terms we improve the convection eigenvalues for low Mach
number or incompressible flows.

The numerical difficulties of the density-based formulation dealing with low Mach
number flows or incompressible flows have been addressed by a number of investigators
[Peyret and Vivian, 1985; Choi and Merkle, 1993; Pletcher and Chen, 1993; Merkle
et al., 1998], among others. In this vein, we construct Jacobian matrices transforming the
conservation variables into the primitive variables such that

ou  dF;, 3G,

oy iy 6.4.1

ot + 0x; + dx; ( )
9Q 0Q Q °Q

A—+B—+C—+C;j—— =0 6.4.2
at B Jx; + ax; + ! 0x;0Xx; ( )

where Q is the primitive variables, Q = [p, u, v, w, T]7, and A is the time Jacobian.

[ pBT 0 0 0 —po, 7]
aU pBru p 0 0 —poju
A= 70 =|pBrv O p 0 —poyv (6.4.3)
pBrw 0 0 p —paw
L e¢f  pu pv pw el
with
1 /9 1 /9
&:_(j), %:__Cﬂ) (6.4.4)
o \op) o \37),
el =pBrE —o,T, el = —pa,Ei+pcp (6.4.5)
1
El =H+K=CPT+—U,'1)5 (646)
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Here, the convection eigenvalues can be examined from
AT'B; — NI =0 (6.4.7)

However, for incompressible limits, the eigenvalues become stiff as the algebraic equa-
tions resulting from (6.4.2) are ill-conditioned, with the acoustic speed being infinite.

6.4.2 PRECONDITIONING MATRIX

To improve the eigenvalues of (6.4.7), let us examine the quantities of the first column
of the time Jacobian which contain the derivative of density with respect to pressure at
the constant temperature.

0 1
(—p—) =—=2 (6.4.8)
op/r RT a
Note that this derivative vanishes for incompressible flows (a = oc), leading to the stiff
eigenvalues in (6.4.7). To circumvent this problem, we may adjust (6.4.8) in the form

ap 1 1 1 1 1 1 oy 1 1 (Bp)
P

b R s A ] (1
(6.4.9)

where V; is a reference velocity which may be defined differently for compressible and
incompressible flows. A logical choice would be that V, = a for compressible flows and
V, = (v;v;)'/? for incompressible flows. Thus, the time Jacobian matrix A is adjusted to
A implying the preconditioning matrix with pB7 in (6.4.3) given by (6.4.9). For highly
viscous flow such as in the boundary layers, it is necessary to choose the reference
velocity to be governed by the diffusion velocity such that

V; = max(V,,v/Ax)

The adjusted eigenvalues of the preconditioned system are determined from

A7'B, - NI =0 (6.4.10)
A =diag(u, u,u, u* +a*,u* —a") (6.4.11)
with
1
ut = —u [1 — (pBT — ﬁ) V}} (6.4.12a)
2 Cp
1 o 1z
at =~ {[1 - (pBT — —”) V}] u + VE} (6.4.12b)
2 Cp

Here, it is seen that, for V, > a, the eigenvalues in (6.4.12) become u & a, whereas if
V, =0, all eigenvalues are of the same order as u. This shows that the eigenvalues of
the preconditioned system remain well conditioned at all speeds.

To provide efficiency and time-accurate solutions, one may utilize a dual time step-
ping by introducing a pseudo-time derivative term into (6.4.2) in linearized iteration
steps:

ABAQ N IAQ dAQ IAQ 9’AQ

A + B; + C; +C

——— = —H 6.4.13
o7 ot 0x; X Y 0x;0x; ( )
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with H given by (6.4.1). As the pseudo time T approaches infinity, the pseudo time term
vanishes and we recover (6.4.1) at steady state.

Pletcher and Chen [1993] constructs the time Jacobian matrix in nondimensional
quantities with the first column and last row of (6.4.3) in terms of Mach number to
obtain the pseudo-time preconditioning matrix by dividing by the Mach number so that
the fatal ill-conditioning can be eliminated. Some examples have been presented by
Merkle et al. [1998] using the pseudo-time preconditioning of the type given by (6.4.3)
with (6.4.9).

6.5 FLOWFIELD-DEPENDENT VARIATION METHODS

So far, the major portions of the historical developments in FDM have been covered
and various computational schemes for the various flow properties have also been
discussed. In this section we explore a general approach which leads to most of the
currently available computational schemes as special cases. Such an approach, called
the flowfield-dependent variation (FDV) methods, is examined in this section.

6.5.1 BASIC THEORY

The original idea of FDV methods began from the need to address the physics in-
volved in shock wave turbulent boundary layer interactions [Chung, 1999; Schunk et al.,
1999]. In this situation, transitions and interactions of inviscid/viscous, compressible/
incompressible, and laminar/turbulent flows constitute not only the physical complexi-
ties but also computational difficulties. This is where the very low velocity in the vicin-
ity of the wall (M =0, Re = 0) and very high velocity far away from the wall (e.g.,
M =20, Re = 10”) coexist within a domain of study. Transitions from one type of flow
to another and interactions between two distinctly different flows have been studied
for many years, both experimentally and numerically. Incompressible flows were ana-
lyzed using the pressure-based formulation with the primitive variables for the implicit
solution of the Navier-Stokes system of equations. The precondition process for the
time-dependent term intended for all speed flows was also discussed. Compressible
flows were analyzed using the density-based formulation with the conservation vari-
ables for the solution of the Navier-Stokes system of equations. However, in dealing
with the domain which contains all speed flows with various physical properties where
the equations of state for compressible and incompressible flows are different, and
where the transitions between laminar and turbulent flows are involved in dilatational
dissipation due to compressibility, we must provide very special and powerful numerical
treatments. The FDV scheme has been devised toward resolving these issues.

For the purpose of the discussion, we shall consider the conservation form of the
Navier-Stokes system (2.2.13) without the source terms.

oU 0F; 9G;
— =0 6.5.1
ar  dx;  ox; ( )

In expanding U™ in a special form of Taylor series about U”, we introduce the
parameters s, and s, for the first and second order derivatives of U with respect to
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time, respectively,

JU™  Ar? yrUT

n+Hl— U+ At o(Aar? 6.5.2
v + ot + 2 92 +O(Ar) ( )
where
gur Ut aAU™!
= + 84 0<s, <1 (6.5.3a)
ot dat Jt
37U A" rAUT!
— < <1 2.
ar YS! + 55 32 0<sp < (6.5.3b)

with AU = U"+! — U". Substituting (6.5.3) into (6.5.2) yields

R0 aAUMH! +At2 aZU"+ VN Vihs
S
ar 4 1 5 \ a2 Ty

U”+1=U”+At( ) +0(Ar)

(6.5.4)

Introducing the Jacobians of convection, diffusion, and diffusion gradients, we write the

first and second derivatives of the conservation variables in the form,
U oF; a6,

—87 - ax; ax[

9°U 9 oU 9 aU 9? U
Y (PPt [N 'St [P (P 6.5.6
a? ~ ax (a’ ar) % ( az) 8x;0x; (Cf az) (65.6a)

in which the convection Jacobian a;, the diffusion Jacobian b, , and the diffusion gradient
Jacobian ¢;; are defined asin (6.3.9) for 2-D and Appendix A for 3-D. Combining (6.5.5)
and (6.5.6a) leads to

U P 3F ; aG‘ 92 oF;, 3G,
— = —(a; + b, ; ! / 6.5.6b
at? 3)(,'( )( X 8x,)+8x,-8xkck(8xj + Bx,-) ( )

(6.5.5)

Substituting (6.5.5) and (6.5.6b) into (6.5.4), and assuming the product of the diffu-
sion gradient Jacobian with third order spatial derivatives to be negligible, we have

aF? 3G/ AFTY 9AGH!
AUn+] —At] — [ i S, __a i _ 0 i
9.x; 9x; ax; ax;
b, BF’? BG”
- (az +b;) (E + ox,; )
3 ) IAFTH JAGTH! O(AS 657
—(a; ; r .
TS Bxi( ) ax; T 0x; +0(ar) ( )

The parameters s, and s, which appear in (6.5.7) above may be given appropriate
physical roles by calculating them from the flowfield-dependent quantities. For example,
if s, 1s associated with the temporal changes (fluctuations) of convection, it may be
calculated from the changes of Mach number between adjacent nodal points so that
s« = 0 would imply no changes in convection fluctuations. The functional dependency

181



182

COMPRESSIBLE FLOWS VIA FINITE DIFFERENCE METHODS

Driver gas —>u, Driven gas t=0
\ Diaphragm
Py P,
Contact
P, surface®  shock

T o, 4|
e

Pa
P l—-—|p2 Py
T,
T
3 T, T
uy=u,=u W
u,=0 u,=0

*Analogous to sliplines (P,=P,. T, #T,, p; # p,, u;=u,) leading to entropy
discontinuity at the contact surface.

Figure 6.5.1 Mechanism of shock wave discontinuities as related
to sy in terms of the changes of Mach number with respect to
the velocity and square root of pressure, density, or temperature,

sa = fu/PIp)= f(u/VRT)= [(M).

of s, on Mach number is illustrated from the shock tube physics as shown in Figure 6.5.1.
Here it is seen that discontinuities of pressure, density, and temperature are related as
a function of Mach number,

sa = f(u/\p/p) = fu/VRT)= f(M)

Similarly, if s, is associated with the changes (fluctuations) of diffusion, such as in
boundary layers, then it may be calculated from the changes of Reynolds number or
Peclet number between adjacent nodal points such that s, = 0 would signify no changes
in diffusion fluctuations. Therefore, the role of s, for diffusion is different from that of
convection. For example, we may define the fluctuation quantities associated with s, as

JAF;! N IAGTH! N AR N JAGH!
§ S1—— §S3——————
4 ax,- ax,’ ! ax,- 3 Bx,-
o A", Mr%ax - M1121in aAF;H—l n \/Relznax - Relznin BAG?“
B Miyin 0x; Renin 0x;
(6.5.8)

where it is seen that the parameter s, originally adopted as a single mathematical or
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numerical parameter has now turned into multiple physical parameters such as the
changes of Mach numbers and Reynolds numbers (or Peclet numbers) between adjacent
nodal points. The magnitudes of fluctuations of convection, diffusion, and source terms
are dictated by the current flowfield situations in space and time. Similar assessments
can be applied to the parameter s, as associated with its corresponding fluctuation
terms of convection and diffusion. Thus, in order to provide variations to the changes of
convection and diffusion differently in accordance with the current flowfield situations,
we reassign s, and s, associated with convection and diffusion as follows:

s.AF; = s1AF;, 5,AG; = s3AG;

SbAGI' = 5 AG;, SbAG,‘ = S4AG1‘
with the various parameters, called the flowfield-dependent variation (FDV) parameters
or simply variation parameters, defined as follows:

s = first order convection FDV parameter

sp =second order convection FDV parameter

s3 = first order diffusion FDV parameter

s4 = second order diffusion FDV parameter

The first order FDV parameters s; and s; are flowfield-dependent, whereas the second
order FDV parameters s, and s4 are exponentially proportional to the first order FDV
parameters, and mainly act as artificial viscosity. Details of these FDV parameters are
given below.

6.5.2 FLOWFIELD-DEPENDENT VARIATION PARAMETERS

As has been pointed out, the success of FDV methods depends on accurate calcula-
tions of the flowfield-dependent variation parameters. Specifically, the convection FDV
parameters s; and s, and diffusion FDV parameters s3 and s4 are dependent on Mach
numbers and Reynolds numbers or Peclet numbers, respectively. The first order FDV
parameters s; and s3 dictate the flowfield solution accuracy, whereas the second order
FDV parameters s; and s4 maintain the solution stability.

Convection FDV Parameters

min(r, 1), r >«

51=10 F <o, Mpn#0 (6.5.9a)
1 Mmin =0
1
$3= 5(1 +s57), 0.05<m<02 (6.5.9b)
with

¥y = 1/ MI1213X — anﬁn/Mmin (6510)

where the maximum and minimum Mach numbers are calculated between the local
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0.5 4

Second order FDV parameters(Sz, S4)

0 0.5 1
First order FDV parameters(s1, 53)

Figure 6.5.2 Relationship between the first and second order variation
parameters s; = (1 +57'}/2, 54 = (1 +s7)/2. with0.05 < q <02.

adjacent nodal points with « being the user-specified small number (o = 0.01). The
ranges of the second order FDV parameter exponent m are given, exponentially pro-
portional to the first order FDV parameter, as shown in Figure 6.5.2. It appears that the
range in 0.05 < m < 0.2 is adequate in most of the examples that have been tested.

Diffusion FDV Parameters

min(r, 1), r>a a=0.01

s3=40 r<a, Repp#0, or Peypy #0 (6.5.11a)
1 Repn =0, or Pey, =0
54 = %(1 +53), 0.05<m<02 (6.5.11b)
with
r = R — ReZy /Remn orr =/ Ped, — Pe2.. [ Pemin (6.5.12a,b)

where the maximum and minimum Reynolds numbers or maximum and minimum
Peclet numbers are calculated between the local adjacent nodal points, and « is a user-
specified small number (« = 0.01). If temperature gradients are large, it is possible that
Peclet numbers instead of Reynolds numbers may dictate the diffusion FDV parameters.
The larger value of s; is to be chosen, as obtained either from (6.5.12a) or (6.5.12b).
Adequate ranges of 1 for the second order FDV variation parameter are the same as
for the case of convection.

Relationships between the first and second order FDV parameters are graphically
shown in Figure 6.5.3a. The ranges of these convection and diffusion FDV parameters
for a typical compression corner high-speed flow are illustrated in Figure 6.5.3b. They
represent the trend of an exhaustive numerical experimentation for various physical
situations.
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Figure 6.5.3 Typical ranges of first order (con- (a) Ranges of convection vartation parameters
vection) and second order (diffusion) variation
parameters for the compression corner high-

speed flow. Laminar, transition, or
_ turbulent boundary
s,=5,=0 layer
T Secondary
boundary

Sy =8, =1 layer
Rotational

~ N 4 = 53 = 1 ﬂOW

(b) Ranges of diffusion variation parameters

6.5.3 FDV EQUATIONS

The final form of the FDV equations can be obtained by substituting the FDV para-
meters as defined in (6.5.8) through (6.5.12) into (6.5.7), leading to the residual of the
form,

R AU _ Af {_ OF!  9Gy AR 8AG?+1:|

dx; dx; . dx; -5 ax;
At T 9 oF"  3G" Af? ) GAF!
— | +b) | LY - = T (a; +b; !
2 {Bx,»(a + )(3)6]' + ij )} 2 {52 [BXj(a + )( ij
9 n+1
+ a—x“(ai + b,) (548_)51) } + O(At3) (65138)
i 7

Now, rearranging and expressing the remaining terms associated with the FDV para-
meters in terms of the Jacobians, we have

da, AU ab; AUl 52¢;; AU
AU™ + At [Sl (*a, ) + 53 ( + Sij )]

X; 0 0x;0x;

At? 3*(a;a; 4 b;a;) AU 3%(a;b; + b;b;)AU!
52 + 84

2 ax;0x; dx;0x;
aF!  AG"\  A2T 9 oF? 9G]
At f L [ —(a; + b)) L + —L oA =0
+ (axi+8x1) 2 {3)@(’—{_ )(BXj+BXj):|+ (A6)

(6.5.13b)
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Here, once again, the product of the diffusion gradient Jacobian with third order spatial
derivatives is neglected and all Jacobians a;, b;, and ¢;; are assumed to remain constant
spatially within each time step and to be updated at subsequent time steps. For simplicity.
we may rearrange (6.5.13b) in a compact form,

2

R = AU"" + ‘i.(E,-AU”“) +

E; AU " O(AP), 6.5.13
ox, axiax,»( JAUTT) + Q"+ OAr) (6:5.13¢)

or, lagging E; and E;; one time step behind,

(1 + E;x— +EJ, ax?;x,-) AU = Q" (6.5.14)
with
E! = At(sia; + s3b;)" (6.5.15a)
E) = {Ats_gcz-j - AT’Z[Sz(a,-a, +bia;) +ss(ab; +b;b ,-)]}n (6.5.15b)
@ = L[+ 6] - — [A—tz(al— L b)(E 4+ G”-)} (6.5.15¢)
ax; ox;0x; | 2 / /

Note that the Beam-Warming scheme [1978] discussed in Section 6.3.2 can be written
in the form similar to (6.5.14) with the following definitions of E;, E;;, and Q™

E, = mAt(a; +b;), withm=0/(1+¢§) (6.5.16a)
E,‘j = mAtc,-]- (65161))
At [OF"  3G! £
"= ! ! AU” 6.5.16
Q 1+§(8xi+8x,-)+1+§ v (6.5.16¢)

where the cross-derivative terms appearing in Q" for the Beam-Warming scheme are
inciuded in the second derivative terms on the left-hand side. The Beam-Warming
scheme is seen to be a special case of the FDV equations ifwesets) =53 =m, s =854 =
s5 = 56 = 0, in (6.5.14), with adjustments of Q" on the right-hand side as in (6.5.16c).
The stability analysis of the Beam-Warming scheme requires § > 0.385and 6 = 1/2 + &.
This will fix the FDV parameter m to be 0.639 < m < 0.75.

We realize that all physical phenomena are dictated by the FDV parameters in the
FDV equations (6.5.14). Either FDM, FEM, or FVM approximations can be applied
to (6.5.14). However, their roles are merely to provide different options of discretiza-
tion, with physics governed by the FDV theory itself. Furthermore, the FDV equations
are capable of producing many existing FDM and FEM schemes as special cases, as
demonstrated in Chapter 16.

For FDM applications, the first derivative for E; AU and the second derivative
for E; ]-AU”+1 in (6.5.14) may be approximated by many options of finite difference
equations including high order accuracy schemes introduced in Section 3.7 or using the
flux vector splitting for the term involved in a; for E; in (6.5.14). However, the physical
aspects accommodated in the FDV theory through the various FDV parameters are
unique and they play important roles, as elaborated next.
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6.5.4

INTERPRETATION OF FLOWFIELD-DEPENDENT VARIATION PARAMETERS

The flowfield-dependent variation (FDV) parameters as defined earlier are capable of
allowing various numerical schemes to be automatically generated. They are summa-
rized as follows:

(1)

2)

3)

(4)

()

(6)

First order FDV parameters. The first order FDV parameters s; and s3 con-
trol all high gradient phenomena such as shock waves and turbulence. These
parameters as calculated from the changes of local Mach numbers and Reynolds
(or Peclet) numbers within each element and are indicative of the actual local
element flowfields. The contours of these parameters closely resemble the flow-
fields themselves, with both s; and s3 being large (close to unity) in regions of
high gradients, but small (close to zero) in regions where the gradients are smatl.
The fact that the contours of sy and s3 resemble the flowfield (Mach number or
density contours) is demonstrated in Figure 13.7.3a. The basic role of s; and s3
is to provide computational accuracy.

Second order FDV parameters. The second order FDV parameters s, and s,
are also flowfield dependent, exponentially proportional to the first order FDV
parameters. However, their primary role is to provide adequate computational
stability (artificial viscosity) as they were originally introduced into the second
order time derivative term of the Taylor series expansion of the conservation
flow variables U™t

Parabolic/elliptic (sy = 0). The s; terms represent convection. This implies that
if 51 = 0 then the effect of convection is small. The computational scheme is au-
tomatically altered to take this effect into account, with the governing equations
being predominantly parabolic-elliptic.

Hyperbolic (s3 = 0). The s terms are associated with diffusion. Thus, withs; = 0,
the effect of viscosity or diffusion is small and the computational scheme is
automatically switched to that of Euler equations where the governing equations
are predominantly hyperbolic.

Mixed ellipric/parabolic/hyperbolic (s) #0,s3 # 0). If the first order FDV
parameters s; and s3 are nonzero, this indicates a typical situation for the mixed
hyperbolic, parabolic, and elliptic nature of the Navier-Stokes system of equa-
tions, with convection and diffusion being equally important. This is the case for
incompressible flows at low speeds. The unique property of the FDV scheme is
its capability to control pressure oscillations adequately without resorting to the
separate hyperbolic elliptic pressure Poisson equation for pressure corrections.
The capability of the FDV scheme to handle incompressible flows is achieved
by a delicate balance between s; and 53 as determined by the local Mach num-
bers and Reynolds (or Peclet) numbers. If the flow is completely incompressible
(M = 0), the criteria given by (6.5.9) leads to s; = 1, whereas the variation pa-
rameter s3 is to be determined according to the criteria given in (6.5.11). Make
a note of the presence of convection-diffusion interaction terms given by the
product of b;a; in the s; terms and a;b; in the s, terms. These terms allow inter-
actions between convection and diffusion in the viscous incompressible and/or
viscous compressible flows.

High temperature gradient flow. If temperature gradients rather than velocity
gradients dominate the flowfield, then s; is governed by the Peclet number rather
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than by the Reynolds number. Such cases arise in high-speed, high-temperature
compressible flows close to the wall.

(7) Transition to turbulence. The transition to turbulence is a natural flow process
as the Reynolds number increases, causing the gradients of any or all flow vari-
ables to increase. This phenomenon is physical instability and is detected by the
increase of 53 if the flow is incompressible, but by both s3 and s, if the flow is com-
pressible. Such physical instability is likely to trigger the numerical instability,
but will be countered by the second order FDV parameters s; and/or s4 to en-
sure numerical stability automatically. In this process, these flowfield dependent
variation parameters are capable of capturing relaminarization, compressibil-
ity effect or dilatational turbulent energy dissipation, and turbulent unsteady
fluctuations. They are characterized by the product of s3 and the fluctuations of
stress tensor (s3AT;;) in which the stresses consist of mean and fluctuation parts.
As a consequence, some regions of the flow domain such as in boundary layers
may always be unsteady (A7; # 0), even though the steady state may have been
reached away from the wall. However, in order for these fluctuation parts to
be correctly determined, it is necessary that Kolmogorov scales be resolved in
sufficiently refined grids such as in the direct numerical simulation (DNS). Thus,
for a coarse mesh, the advantage of FDV process cannot be expected.

6.5.5 SHOCK-CAPTURING MECHANISM

The shock-capturing mechanism is built into the FDV equations of continuity, momen-
tum, and energy. For example, let us examine (6.5.7) or (6.5.13) and write the momentum
equations, with all diffusion terms neglected.

Alpv))™ + Atl(pvivy)i + p.jl"

A (m -
= —s1AH{Apviv) + Apd YT + 527(01(( )+ b;c ))[A(ijV,‘),i +Aap ;!
AL, B
+ T(“zgn) + B pvivy) + p ik (6.5.17)

where a,(cm) and b,({m) denote the convection and diffusion Jacobians, respectively. To
identify the shock capturing mechanism in the FDV formulation as compared to the
TVD finite difference scheme, let us rewrite (6.5.17) for the 1-D momentum equation,
retaining only the convection flux without the pressure gradients.

daAut  Ar? 82 Attt aft  At2 drfn
n 2 f n g f

AUt = —Ats — At 6.5.18a
“ ™ ox 2 s24 dx2 ax 2 3x? ( )
or
m
ntl vV Mr%]ax - Mr%lin 861AU”+1 Atz anlax - Mr%lin 2 BzAu"“
Au = — At -+ a
Mmin dx 2 Mmin 8x2
art A prfr
— At f + f (6.5.18b)

a
ax 2 ax?
where f is the convection flux and a is the 1-D convection Jacobian or speed of sound.
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The FDM analog of (6.5.18) at node i becomes

Ayt 1
Alt =—51aE(Au:f‘“ AUt) + s20* At ——

1
- U= ) vadeT (=2 4 ) (6519

The second order TVD semi-discretized scheme (6.2.109) with limiter functions (6.2.110)
is written at node i as

du; at 1y
— = [1 + lI’itl/z 2r -[I- %/2:| (ui — U;—1)

TN (A n+l 2Au”+1+Au”H)

dt Ax rsn
a 1%, 3/2
e N L. Y SR 6.5.20
Ax { wR T (i1 — ;) ( )
where W and r denote the limiter function and velocity ratio, respectively,
+ Ui — Ui - Uiyl — U
- — ’ r = 7 6.5.21
=312 Ui—1 — U2 F+3/2 Uitz — Uiy ( )
Inserting (6.5.21) into (6.5.20) yields
du[- at 1
E:_E |:(ui — 1)+ i‘pil/z(“i — Ui 1) — q”fﬁ3/2(“i~1 - ui—z)]
a” | _
T Ax (i1 — ui) + 5‘1’5+1/2(“1'+1 —u;) — II"1‘+3/2(”i+2 — Uiy1) (6.5.22)
Let us assume that, for positive-going waves,
w=u'+sAult,  am =0, at=a, W, =2, =V
Substituting the above into (6.5.22), the TVD equation may be expressed as
Auit! 1 1 1 WAxX s 1 nt1
A :—saH(Au?‘F Aul) + S Ax S(Aut =280 + Aulh))
1, ., \IJA
—-—(f"=f —-2f, 6.5.23
If we set
SAxWY aAt
51=98, §$H= , =—, $2=35§
! ? ant Ax ? ]

itisseen that the FDV equation (6.5.19) becomes identical to the TVD equation (6.5.23).
Note that in TVD either a* or a— must be chosen from the flowfield and the FDV
parameters sy and s; in FDV are automatically calculated. Of course, the precise shock-
capturing mechanism of both methods is not exactly the same, because all the assump-
tions made above are not true in general. However, it is interesting to note that the first
order convection FDV parameter s; is related to the TVD limiter function ¥ as

sAXx

31 =
ant
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in which it is shown that the convection FDV parameters (s, s>} are proportional
or equivalent to the TVD limiter functions. A similar process can be shown also for
negative-going waves (¢~ =a.a" =0).

Considering that the motivations and procedures of derivation are completely dif-
ferent, the analogy between the TVD scheme and FDV formulation as demonstrated
above is remarkable. Notice that, beyond this analogy, the FDV formulation is to couple
the convection variation parameters (s;, s2) with all other variation parameters (s3, s4)
so that shock wave interactions with all other physical properties can be resolved.
They are involved also in transitions and interactions of compressible/incompressible,
inviscid/viscous, and laminar/turbulent flows.

In the TVD methods, the resulting Euler equations are based on positive and nega-
tive eigenvalues or Jacobians, either @~ = 0 or a* = 0, which will switch the scheme to
either backward differenceing for positive waves or forward differencing for negative
waves in one dimension, respectively.

To illuminate the consequence of the FDV theory, it is infomative to write (6.5.18a)
in the form,

Al \n N At?
W =l — spat 2 (8u§+' il 8u§+‘ ) ) — sa°
Ax 2Ax?
2 (+.~))”+1 _ (2 (+.~))” ) (+.-)
X |:(6 U (8 U, (8f ) 2Ax2( f; )
(6.5.24a)

where the flux vector splitting scheme is used with @ =a* + a4~ and the following
definitions:

For M>1, at=a, a =0, duf =w —u;y, 3 = fi— fi,
U = w — 22U + Uis, ¥t = fi—2fic+ fia,
For M<1, at=0, a =a, 8 =uy —w, df = firn— 1
8 u; = wipr — i + U, ¥f7 = fiz—2fin+ o

Thus, the finite-differenced FDV equation takes the form

At _ Ar? NS
)___aul(+. -+l +sza2—~—2(82u§+‘ ))
x

+1 | o g
s1d
T 2Ax

At - At? N\
=ul + Sla(+")——8uf+‘ " 4 524 A (62u§+' ))

A ( 8f ) ZA 2( ﬁu—)) (6.5.24b)

The main difference between the finite-differenced FDV theory and the TVD
schemes lies in the fact that in FDV methods variation parameters control the shock
capturing mechanism and play the role similar to the limiters in TVD.

In the finite-differenced FDV methods, calculated variation parameters affect the
convection and diffusion Jacobians associated with £ and E; in (6.5.15a ,b) based on the
Mach number and Reynolds number changes between ad]acent nodes in multidimen-
sions. Thus, for high values of the variation parameters indicative of high gradients
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of variables, characterize the discontinuous physical behavior of the variables. The
contours of these variation parameters closely resemble the flowfield itself (see
Figure 13.7.3.2). An example for a triple shock wave boundary layer interaction prob-
lem using FDV-FDM is shown in Figures 6.8.21 through 6.8.24. Other examples of the
FDV methods are demonstrated in Sections 13.7, 15.3, and 27.3.

6.5.6 TRANSITIONS AND INTERACTIONS BETWEEN COMPRESSIBLE
AND INCOMPRESSIBLE FLOWS

One of the most significant aspects of the FDV scheme is that, for low Mach numbers
(incompressible flow), the scheme will automatically adjust itself to prevent pressure
oscillations by ensuring the conservation of mass. This can be evidenced by the presence
of the second derivatives of pressure arising in the equations of momentum, continuity,
and energy. We note that the FDV momentum equations given by (6.5.17) may be
rearranged in the form,

0

S (V)" 4 (pviv) + Py = 7Y = Sj(m) (6.5.25)
with

S,(m) = — |_S1(ApViV,' -+ ApB,—,-) — S3AT['[JZ+I
At m
+ = 5 [( ( )+b( ))((PVzVJ) + P _Tl]l)]

At m m n+l
+5 [(a,i Db ’) (s A(pViv)i + Ap ;) — s4m,-,-_,-)] ; (6.5.26)

Similarly, the FDV equation for continuity becomes

n+1

A n+1 ____Atl:_( o A i+ Atz (L) N (C)A Y i
p = pvi)i — s (PVJ).]' ]+_2 a; (pvi).; i+52 a; Apv;) ;

(6.5.27)

with al.(c) being the convection Jacobian for the continuity equation. Substituting (6.5.17)
into (6.5.27) and rearranging the differential equation of continuity,

J n+1
dt
with
S(c) = Atsi[(pvivy)i + pj — il — Atsi[si(A(pvivy) i + Apj) — S3AT,-]-',-]'HJT’_I

+(pvi)" = S(c) (6.5.28)

At? (m) n
=5 si[@™ + B (ovivi)i + pj = 7]

At my L (m
~ Ssil(af" + 5" 2 Apviv )i + Ap.j) — 53A7i1)

At

+ 5 ) (a ()(PVJ) )

]n+l

(6.5.29)
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where the third derivative associated with s, is neglected. A glance at (6.5.26) and
(6.5.29) reveals that the right-hand side terms S(m) for momentum and $(c) for con-
tinuity are the additional terms of higher order derivatives arising from the process of
derivations of the FDV equations.

The FDV equation for energy is of the form,

A(pEY™ = At —(p Evi + pvi)i + (mijv;)i + kT 1"

— At{s1[A(p Evi) + pvili — s3LA(Tiv)) + kT 1"

At? e e n
+ ———{(a,(c) +B)[(p Evi + pvi)i — (7i;v))0 — kTul},

2
Atz e e n+1
+ “2—{(“/(< b ) [s2A(p Evi + pvi).i — s Ay + kTi),i]},;:-
(6.5.30)
which leads to the reconstructed equation of energy,
d(p E)y™t!
Mo B o Bt ps + Gy KT = (0 (6531)
with
S(e) = —-{Sl[A(p EV,‘) + pV[]i — 83 |_A(T,'/'Vj) -+ krij,'}n—H
At (e) e n
+ 7{(61,( + B)[(p Evi + pvi)i — (V)i — kTul}
At e e n+l
+ S @ + 0 A B 4+ pvi)s — sy + KT (6532)

The physical implications of the right-hand side terms for all equations are quite com-
plex. There exist not only the second derivatives of pressure for the terms having no
variation parameters at the temporal station 71, but also the inviscid/viscous interactions
contributed by the s; and s, terms at the temporal station n + 1. Thus, the transitions
and interactions between compressible and incompressible flows are contributed by
inviscid/viscous interactions or convection/diffusion interactions.

The most crucial aspect of the transition between compressible and incompressible
flows is the relationship of the equation of state shared by both compressible and in-
compressible flows. To this end, consider that initially the fluid is a perfect gas and that
the total energy is given by

1
E=c,T- Py, (6.5.33)
p 2
The momentum equation for steady-state incompressible rotational flow may be inte-
grated to give

1
[(p+ ipV/'Vi) ’dxl- = [(MV,‘_H +p$gjij03'k)dxi (6534)
1
p+5pVivi=po+ Q (6.5.35)

2
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with
1
Q= - (vijj + pEijrVjwip)dx;

where py is the constant of integration, and # is the spatial dimension.
Substituting (6.5.33) into (6.5.34) leads to the following relationship:

po=plcpT+vivi — E)—Q (6.5.36)

If py as given by (6.5.36) remains a constant, equivalent to a stagnation (total) pressure,
then the compressible flow as assumed in the conservation form of the Navier-Stokes
system of equations has now been turned into an incompressible flow, which is expected
to occur when the flow velocity is sufficiently reduced (approximately 0.1 < M < 0.3 for
air). Thus, (6.5.36) serves as an equivalent equation of state for an incompressible flow.
This can be identified nodal point by nodal point or element by element for the entire
domain. Figure 13.7.4¢.f shows that both density and stagnation pressure begin to vary
in the cavity flow problem for M = 0.1, whereas they remain constant for M = 0.01.

We may begin with the condition given by (6.5.35) for compressible flows. If compu-
tations are involved in low-speed flows, then the governing equations and computational
schemes initially intended for high-speed compressible flows are automatically switched
to those for low-speed incompressible flows with p; remaining constant for all low
Mach number flows (approximately 0.1 < M < 0.3) based on the flowfield-dependent
variation parameters. If the flow reverses to compressible, then the stagnation pressure
becomes variable, allowing the density to change.

An advantage of the FDV scheme is to avoid the so-called pressure correction pro-
cess, preconditioning approach, or the implementation of a separate hyperbolic-elliptic
equation as is the case with other computational schemes designed to accommodate
flows of all speed regimes. In the case of the FDV formulation, a computational scheme
similar to pressure correction (keeping pressure from oscillating) automatically arises
by means of the Mach number and Reynolds number-dependent variation parame-
ters. This approach is particularly useful for the inviscid-viscous interaction regions and
boundary layers close to the wall such as in hypersonic aircraft or shock wave turbulent
boundary layer interactions in general.

6.5.7 TRANSITIONS AND INTERACTIONS BETWEEN LAMINAR AND TURBULENT FLOWS

When inviscid flow becomes viscous, we may expect that the flow may become laminar
or turbulent through inviscid/viscous interactions across the boundary layer. Below
the laminar boundary layer, if viscous actions are significant, then the fluid particles are
unstable, causing the changes of Mach number and Reynolds number between adjacent
nodal points (assuming they are closely spaced) to be irregular, the phenomenon known
as transition instability prior to the state of full turbulence. How can these processes be
modeled in FDV formulation?

Fluctuations due to turbulence are characterized by the presence of the terms in the
equation of momentum, continuity, and energy such as

AT,']' (6537)
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Physically, the above quantity represents the fluctuations of total stresses (physical
viscous stresses plus Reynolds stresses) controlled by the Reynolds number changes
between the local adjacent nodal points. Thus, the FDV solution contains the sum of
the mean flow variables and the fluctuation parts of the variables.

Once the solution of the Navier-Stokes system of equations is carried out and
all flow variables are determined, then we compute the fluctuation part, f’ of any
variable f,

ff=r-7 (6.5.38)

where f and f denote the Navier-Stokes solution and its time or mass average, respec-
tively. This process may be replaced by the fast Fourier transform of the Navier-Stokes
solution. Unsteady turbulence statistics (turbulent kinetic energy, Reynolds stresses,
and various energy spectra) can be calculated once the fluctuation quantities of all vari-
ables are determined. See Example 6.5.4 and Figure E6.5.4 for the supersonic turbulent
flow on a compression corner.

Although the solutions of the Navier-Stokes system of equations using FDV are
assumed to contain the fluctuation parts as well as the mean quantities, it will be unlikely
that such information is reliable when the Reynolds number is very high and if mesh
refinements are not adequate to resolve the Kolmogorov microscales. In this case, it is
necessary to invoke the level of mesh refinements as required for the direct numerical
simulation (DNS). Tt is expected that FDV methods lead to accurate solutions at high
Mach number and high Reynolds number flows if the mesh refinements required for
DNS are used.

It is important to recognize that unsteadiness in turbulent fluctuations may prevail
in the vicinity of the wall, although a steady state may have been reached far away
from the wall. This situation can easily be verified by noting that AU"! will vanish
only in the region far away from the wall, but remain fluctuating in the vicinity of the
wall, as dictated by the changes of Mach number in the variation parameter s3 between
the nodal points and fluctuations of the stresses due to both physical and turbulent
viscosities in At;; characterized by (6.5.37).

® CONCLUDING REMARKS

Transitions and interactions between inviscid/viscous, compressible/incompressible, and
laminar/turbulent flows can be resolved by the FDV theory. It is shown that variation
parameters initially introduced in the Taylor series expansion of the conservation vari-
ables of the Navier-Stokes system of equations are translated into flowfield-dependent
physical parameters responsible for the characterization of fluid flows. In particular,
the convection FDV parameters (s, s2) are identified as equivalent to the TVD limiter
functions in a specialized case. The FDV equations are shown to contain the terms of
fluctuation variables automatically generated in the course of developments, varying in
time and space, but following the current physical phenomena. In addition, adequate
numerical controls (artificial viscosity) to address both nonfluctuating and fluctuating
parts of variables are automatically activated according to the current flowfield. It has
been shown that some existing numerical schemes in FDM are the special cases of the
FDV theory.



6.6 OTHER METHODS

An example of three-dimensional triple shock wave boundary layer interactions is
demonstrated in Section 6.8.2. Some simple problems of FDV methods for supersonic
compression corner and driven cavity using FEM are shown in Section 13.7. Appli-
cations of FDV theory using FVM-FEM are demonstrated in Section 15.3. Finally,
applications of FDV-FEM methods to relativistic astrophysical flows are presented in
Section 27.3.

6.6 OTHER METHODS

6.6.1 ARTIFICIAL VISCOSITY FLUX LIMITERS

The convection flux vector may be written in the form [Jameson et al., 1981],

Uinn+ Uj
Fip = F(%i) —dis (6.6.1)

with
dj2 =P (Uit = Up) =€) (Ujsa = 33U +3U; — Upy)
42 = j+1/2 j+1 7 ]+]/2( j+2 ]+1+ j j-1

2
€02 = KO Rjup Wi

4 _ 2 @)
Eiviz = max(0, KD Rji1p — S/+1/2)
where k® and k4 are real numbers fixing the amount of diffusion brought up by

the second and fourth order dissipative operators. R;,,, is the spectral radius of the
Jacobian dF/dU at the cell face j + 1. W, is a limiter based on

o Pivi — 2P+ pj-il
Y P+ 2P+ D
‘Dj+1/2 = max (\p]‘, lL‘j.}_l/z) (662)

Thus, the flux vectors may be written in terms of limiters in the form,
1 1
Fiyi = 5(Uj¥; + Ujis1Wjp) = i(Uj + Ujy1)
1 1
Fioi = 5 (Ui ¥ + Up¥)) = 5 (Uj + U)) (6.6.3)
Using the flux of the mean value, we obtain
1
Fisip = 2 (Up + Uje)(¥) + Wj-1)
1
Fi_1p= Z(Uj_] + Uj)(‘-pj_l + ‘I’j) (6.6.4)
which represents a semi-discrete equation using a skew-symmetric form of second
order. It is designed to reduce the aliasing errors that are crucial in low order nondis-

sipative schemes useful in problems such as large eddy simulations of turbulence (see
Section 21.7.3).
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6.6.2 FULLY IMPLICIT HIGH ORDER ACCURATE SCHEMES

The Navier-Stokes system of equations in terms of the primitive flow variables,

Q=[p v pl"

may be written as

9Q 3Q  9G;
— 4+ A — 4+ — =0 6.6.5
ot + 9X; + dx; ( )
with
0
AT = ATQT +ATQ)
ax; ' :

where A; 1s the convection flux Jacobian matrix.
The fully implicit finite difference approximations of (6.6.5) may be written as

3Q"! —4Q" + Q! . 8G; "
ATQ7 + ATQH)H! —t =) 6.6.

The Newton-Raphson solution of (6.6.7) may be written in the form

d
(I + Atﬁ) AQ™T = —AQ"™ 4+ AtH™ (6.6.8)
with

ml_%n] n lnl
set= (o e Jot)

>
H™ [ (A Q7 G]

where the superscript mrepresents the m-thiteration step, with Q™ and Q™ indicating the
forward and backward finite differences. Rai and Moin [1993] used fifth order accurate
finite differences for large eddy simulation calculations in compressible flows with a
seven-point stencil,

—6Q; 2 + 60Q;, 1 +40Q; — 120Q;_; + 30Q;_> — 4Q,_3

s = (G -20n+ J0 )

Q. = 120Ax
4Q; 3 —30Q; 2 + 120Q;_2 — 40Q; — 60Q; 1 + 6Q; >
Q=— - 120Ax (669)

on a grid that is equidistanced in the x-direction. The remaining convective terms are
evaluated in a similar manner. The above scheme is used in Section 21.7.3.



6.7 BOUNDARY CONDITIONS

6.6.3 POINT IMPLICIT METHODS

In order to circumvent stiff equations due to widely disparate time scales in source
terms (such as occur in chemically reactive flows), it is advantageous to use the point
implicit scheme in which the source terms are provided implicitly. Thus, the Navier-
Stokes system of equations are written as

AL aF;  aG;\" aB
=L —{B"+ —AU"} =0 6.6.10
At + (ax,- + dx; ) ( + alU v ) ( )
Rearranging, we obtain
B\ ! aF; 3G, "
I— At— AU = — A ! I 6.6.11
( aU) ( 0x; + 0x; ( )

where the source term Jacobian is evaluated implicitly. Note that derivatives of the
convection and diffusion terms may be discretized with the fourth order accuracy finite
difference scheme as used 1n Section 22.6.2.

6.7 BOUNDARY CONDITIONS

Mathematical theories of boundary conditions have been reported extensively in the
literature. They include Kreiss [1970], Rudy and Strikwerda [1980], Gustafsson [1982],
Dutt [1988], Oliger and Sundstrom [1978], and Nordstrom [1989], among others. Incor-
rect specifications of boundary conditions result in solution instability, nonconvergence
of solutions, and/or convergence to inaccurate results. Boundary conditions must be
correctly specified in accordance with speed regimes at inlet and outlet, viscous inter-
actions on solid walls, one-dimensional or multidimensional geometries, reflecting and
nonreflecting boundaries, and farfield boundaries.

Recall that derivations of Neumann boundary conditions and specification of bound-
ary conditions in general for hyperbolic, parabolic, and elliptic equations were presented
in Section 2.3, Discussions on boundary conditions associated with FEM will be included
in Sections 10.1.2, 11.1, and 13.6.6. Multiphase flow boundary conditions are also pre-
sented in Section 22.2.6. In what follows, various boundary conditions involved in FDM
are described.

6.7.1 EULER EQUATIONS

6.7.1.1 One-Dimensional Boundary Conditions

As mentioned in Section 6.2.1.3, the number of boundary conditions to be specified
at inflow and outflow boundaries is determined by the eigenvalue spectrum of the
Jacobian matrices (6.2.6) in terms of the primitive variables associated with bound-
ary conditions normal to the surface. They are the characteristic variables or Riemann
invariants Wi, W,, and W; in one dimension as given by (6.2.15) and (6.2.30). The
general rule is that the number of Dirichlet boundary conditions for primitive vari-
ables is equal to the number of positive eigenvalues of the Jacobian matrix, which
are prescribed as physical boundary conditions. In contrast, the negative eigenvalues
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represent the numerical boundary conditions which must be extrapolated from the
flowfield.

Propagation of flow quantities in a one-dimensional flow are shown for expansion
and shock waves in Figure 6.2.3. Note that C_ wave is negative for subsonic flow whereas
it is positive for supersonic flow in the domain of dependence. A summary of general
boundary conditions is shown in Figure 6.7.1. At an inlet point, the characteristics Cy
and C, have slopes u and u + a, which are always positive for a flow in the positive
x- direction. Thus, they will carry information from the boundaries toward the inside
domain. The third characteristic C_ has a slope whose sign depends on the inlet Mach
number. For the supersonicinlet, C_ has a positive sign, whereas it has a negative sign for
subsonic flow. Therefore, no boundary conditions associated with C_ for the subsonic
inlet can be specified. Similar considerations can be made for the outlet. Namely, no
boundary conditions are to be specified for C, and Cy. As to C_, however, we must
provide boundary conditions for subsonic outlet, but not for supersonic outlet.

Note that each characteristic variable transports a given information and the quan-
tities transported from the inside of the domain toward the boundary will dictate the
situation along this boundary. Thus, only variables transported from the boundaries
toward the interior are identified as physical boundary conditions. The remaining vari-
ables transported outside of the domain depend on the computed flow situations or
part of the solution. This additional information, known as the numerical boundary
conditions, can be linearly or quadratically extrapolated from the downstream (inflow)
or upstream (outflow) flowfield information. These physical and numerical boundary
conditions are summarized in Table 6.7.1.

Characteristic Boundary Conditions

If the full information on the incoming and outgoing characteristics is recovered
from the imposed combinations of conservation variables U and primitive variables V,
then the problem is said to be well posed. Let us consider the subsonic outlet in which
one physical boundary condition is allowed, say pressure p. From the relations (6.2.19)
and (6.2.23) together with (6.2.28) we may write

- ~1/pa 0 17 [ap

AW L, Lj][av P

AW:L “]:{ aa a_bl} [AV"]z ~1/a> 1 0| | Ap (6.7.1)
Wo | Lo Lo b 1/pa 0 1], Au

where the subscript 0 denotes end conditions, with @ and b indicating the physical

Table 6.7.1 Physical and Numerical Boundary Conditions

Subsonic Supersonic

Inlet Physical W, W, Wi, Wh, W4
Numerical W, None
Outlet Physical W3 None

Numerical W, W, W, W, W;
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(imposed variable) and numerical (free variable) boundary conditions, respectively.

W
Wa = W, Wb=[wj, Va=p, Vb=m

_ _ _ ~1/a? _ 1 0
1 1 1
Lo = o Loy =[0 1) L= L/pa]’ Fis = [0 1]
Solving AV, from (6.7.1) yields

AVy = (L;}) ' [AW, — LAV, ] (6.72)

Obviously, the nonsingularity of L, in (6.7.2) constitutes the condition for well-
posedness. Thus, we require

ILiy | #0 (6.7.3)

This can be applied for the various combinations of primitive variables at the boundaries.
Atasubsonicoutletitis shown by (6.7.1) that any of three variables p, &, p can be chosen
as a physical boundary condition. This is because the first column of the transformation
matrix in (6.7.1) contains all nonzero terms and thus none of the submatrices defining
W, is zero. For a subsonic inlet the physical boundary conditions W, consist of p and
u, with W, = p. This leads to

1 0 —1/a? Ap
=10 1 1/pa Au (6.7.4)

sz[
0 1 =1/pa,[Ap

AW,
AW,

where it is seen that the bottom row of the transformation matrix has one zero term
corresponding to the density p so that

A
AW, = Au — =P (6.7.5)
(pa)

which indicates that it is not possible to define Ap at the boundary and the choice of
u and p as a physical boundary condition is not well-posed. However, for any other
combination involving p as a physical condition, one can determine the remaining free
variable using (6.7.5).

Extrapolation Methods

For simplicity, let us use the variable Q to denote either the conservation variables
(U), primitive variables (V), and characteristic variables (W) or any other combina-
tion, with the conditions for an inlet boundary designated asi = 1,2.3... and outlet
boundary as/ = p, p— 1, p — 2, ... The common practice is to use a linear (first order)
extrapolations as follows:

Q' =2Q0" - Qp%;
AQ,=2AQ) , - AQ_,
Q;'=2Q;_,-Q,,
AQ, =2AQ07 - AQIT)
Q' =2Q; - Q!

Time extrapolation: (6.7.8a,b)
2Q; =8

Space extrapolation: (6.7.6a,b)

Space-time extrapolation: (6.7.7a,b)
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These schemes were studied by Griffin and Anderson [1977] and Gottlieb and Turkel
[1978] for applications to the two-step Lax-Wendroff schemes. They show that the space-

COMPRESSIBLE FLOWS VIA FINITE DIFFERENCE METHODS

extrapolation methods do not stabilize these schemes nor reduce the stability limits,

Another approach is to discretize the equations at the boundary points in a one-sided
manner such as (3.2.5) and to add this equation to the interior scheme. For instance,
one could add a first order appropriate upwind equation in the Lax-Wendroff scheme
and provide the missing information. Some of the examples for boundary conditions

are shown in Figure 6.7.2.

Subsonic Inflow

Supersonic Outfiow

INFLOW

OUTFLOW

Physical boundary conditions, (p, , 7))

No physical boundary conditions

Numerical boundary conditions
Extrapolate: u =2u,—u,
Compute: p=pRT

Numerical boundary conditions
Extrapolate: w ,=2u ,—u P =20, ~ Py
I, =21,-T,

the others free.

Initial conditions, p(x,0) = T(x,0) = u(x,0) = 0; If outflow 1s subsonic, specify p . and set

()
u=u —_—
v=_0 ®
P=P.
T, Nl
«— v=0
Mw > ];.i];—,m Mout>l

< VP T
Extrapolated

< p Extrapolated

Figure 6.7.2 Examples for boundary conditions (a) 1-D boundary conditions for variable cross sections.

(b) 2-D boundary conditions for a flat plate.

u=v=40 —/ u=v=20
P=r. T=T, (Isothermal)
T=T
0 T oT
%; -5 " 0  (Adiabatic)
(b)
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Characteristic Extrapolation Methods

This is an alternative method to the one-sided discretization of the compatibility
equations corresponding to the outgoing characteristics [Yee, Beam, and Warming,
1982]. It follows from (6.2.33) that the numerical characteristic variables AW, are de-
fined by an extrapolation such as in (6.7.6b):

AW, , =2AW;, g — AWy (6.7.9)

The values ati = p — 1 and i = p — 2 are obtained from the primitive variables by an
explicit evaluation of (6.7.2):

AW, =LAV, + LAV, fori=p—1,p-2 (6.7.10)

where the matrix elements are evaluated at time level n. By setting AV, = 0in (6.7.2)
we obtain

AVi, = (Lyy )" AW, (6.7.11)

where for time dependent problems AV, = 0. This will be determined by the imposed
time variation. The free variables V, , are transformed to the conservation variables
through (6.2.7).

AV, | 0
AU, =M, [AVb,J =M, [AVb,J (6.7.12)
For subsonic outflow boundary with pressure imposed, we observe that
_lAw ] [-1/a? _ 1 0 p
AWy = {sz]i B [ 1/va Aritlg 1|2y ; (6.7.13)
_S=Ap/a® + Ap _[-ap/a*+ ap [ Awy
AWb,p—z[AP/pa+Au o Lavasau] = (A (6.7.14)

withi = p—1,i = p — 2. It follows from (6.7.11) and (6.7.14) that

. Ap _ 1 0 Aw1
AV,,,,,_[ M]p—[o 1] [szL (6.7.15)

Similarly, the corresponding conservation variables are given by (6.7.12),
Ap Ap
AU, =M Au| = A(pu) (6.7.16)
01, LalE)],

Thus the boundary condition equation for (Ap), may be written as

A A
(Ap), +2(—2p - Ap) - (—f — Ap) =0 (6.7.17)
a p1 a po2

This should be added to the interior point p — 1. Similar equations can be written for
A(pu) and A(pE).
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6.7.1.2 Multi-Dimensional Boundary Conditions

Evaluation of multidimensional boundary conditions may be carried out similarly as
in one dimension. The number of physical boundary conditions to be imposed at a
boundary with the normal vector n pointing toward the flow domain is determined by
the signs of the eigenvalues of the matrix K in terms of the primitive variable Jacobian
A; or the conservation variable Jacobian a;.

K=Akx (i=123)

K* = ax, (i =1,2.3) (6.7.18a,b)
The cigenvalues A of both matrices K and K* are equal,
ViK; 0 0 0 0
0 vk O 0 0
A=10 0 Vik 0 0 (6.7.19)
0 0 0 viki+a 0
0 0 0 0 ViK; — a

in which the normal velocities v;r; = v;k; determine the signs of the eigenvalues.

Note that, for the inflow and outflow boundaries, if an eigenvalue \ is positive, the
information carried by the corresponding characteristics propagates toward the interior
domain and a physical boundary condition is to be imposed. If \ is negative, then the
numerical boundary condition must be imposed. For example, at the subsonic inlet, two
thermodynamic variables (temperature and pressure) and two velocity components are
available as physical boundary conditions and one velocity component can be used as
a numerical boundary condition.

For a solid wall, a single physical boundary condition is required as only one char-
acteristic enters the flow boundaries. This is equivalent to

Vil = 0
pn; 0
Here, the wall pressure is numerically extrapolated from adjacent points.

Two-dimensional compatibility or characteristic relations are written as an extension
of (6.2.28) as

(6.7.20a,b)

_ 6 -
-
a
ow KyOlt — KOV
W= | V2| = dp (6.7.21)
S n;dv; + py
811)4 B
—ndv; + 2
L pa

which may be recast into (6.2.20) and (6.2.29). Thus, if the pressure and the velocity
are uniform in the boundary surface, it is seen that we recover the one-dimensional
condition given by (6.7.20).

6.7.1.3 Nonreflecting Boundary Conditions

Physical boundary conditions may be replaced by specification of nonreflecting bound-
ary conditions. Let a constant pressure be imposed at a subsonic exit section as
Ap=pT —p"=0 (6.7.22)
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This is equivalent to allowing perturbation waves to be reflected at the boundaries. Since
the amplitude of the local perturbation wave carried by the incoming characteristic is
Aws = Au — Ap/pa,imposing Ap = 0 amounts to the generation of an incoming wave
of intensity Aws = Au reflected from the exit boundary.

Engquist and Majda [1979] and Hedstrom [1979] proposed that the nonreflecting
boundary conditions be implemented by making the local perturbations propagated
along incoming characteristics vanish.

Bwk
— =0 6.7.23
Y (6.7.23)

This will require that, for subsonic flows, we have
Inlet boundary conditions

Ap
A

Awy = Au+ =L — (6.7.24b)
pnan

Outlet boundary condition
Ap

Aws = Au —
pnan

(6.7.25)

These characteristic variables are not constant across a shock wave and will result in a
reflection wave if a shock passes through a boundary.

Rudy and Strickwerda [1980] observed that the nonreflecting condition (6.7.23) does
not ensure (6.7.22) or p = p* and that an ad hoc treatment may be to replace (6.7.23)
for the incoming characteristic by, at the exit boundary,

______ (p — p*) =0 (6726)

for o > 0. The parameter « is problem dependent. For example, it has been suggested
that we may choose 0.1 <a<02for M=08anda =1 for M = 0.4.

6.7.2 NAVIER-STOKES SYSTEM OF EQUATIONS

The Navier-Stokes system of equations may be considered as mixed hyperbolic,
parabolic, and elliptic equations, or refered to as incompletely parabolic equations
[Strikwerda, 1976; Gustafsson and Sundstrom, 1978]. Let us consider the Navier-Stokes
system of equations in the form

au au aU 3*U

—+a—+b—+¢;—— =0 6.7.27

at + ‘ax, + taxi TG 0x;0x; ( )
which is obtained from (6.3.7) by inserting the convection Jacobian a;, diffusion Jacobian
b;, and diffusion gradient Jacobian ¢; j- To determine the number of boundary condition,
we must convert the conservation variables, U= [p pv; pE]” into nonconservation
variables (primitive variables), V= [p v; p]” such that

av vV av 2V
— +A— +B;

—_— —— =10 6.7.28
of ax; ax; + 0x;0x; ( )
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Here, procedures similar to those employed for the case of the Euler equations in
Section 6.2.1 may be followed to obtain the eigenvalues for the diffusion Jacobian B; and
the diffusion gradient Jacobian C;; through the transformation matrix of the form (6.2.7)

d
m=2Y
Vv

so that
A =M'aM, B,=M 'bM, C;=M'¢;M

Introduce the oscillatory behavior in (6.7.28) with the wave number k; and frequency
w in the form,

V = Ve/ti—on (6.7.29)
leading to

(—o + Ajk; + Bk, + Gk K]‘)V =0 (6.7.30)
which has a nontrivial solution if and only if

K—N| =0 (6.7.31)
with

M=o (6.7.32)

K =A;x; + Bik; + CijKiK; (6.7.33)

The eigenvalue problem similar to (6.7.31) was obtained by Nordstrom [1989],
neglecting B;k;.

For multidimensional problems, the extra boundary conditions for the Navier-Stokes
system of equations are obtained by

f T,‘j_l'dQ = f T”‘n,‘dr (6734)
2 r
with

TijHi = M[(Vi.j +Vj,g)n,' - %Vg‘,‘nj] (6735)

where the velocity gradients are taken in the flow directions.

Unlike Euler equations, the Navier-Stokes system of equations require the no-slip
boundary conditions at solid walls, resulting in the relative velocity between the fluid
and the solid wall being zero.

For an adiabatic wall, we have

Gu = —kTin; =0 (6.7.36)

The wall temperature T = T,. may also be fixed. The second thermodynamic variable
at the solid wall can be obtained either by extrapolation from the inside or by applying
the normal pressure equation

ap

™ = TiiH; (6.7.37)
which vanishes for thin shear layers. A summary of boundary conditions for the Navier-
Stokes system of equations is shown in Figure 6.7.2.
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Since the exact form of eigenvalues of K in (6.7.7) depends on many different phys-
ical and geometrical conditions, the number of physical boundary conditions (positive
eigenvalues) and the number of numerical boundary conditions (negative eigenvalues)
cannot be determined exactly for all arbitrary physical and geometrical situations.

As mentioned earlier, the accuracy and convergence of numerical solution of the
Navier-Stokes system of equations depend on correct applications of boundary condi-
tions. Rudy and Strickwerder [1980] and Nordstrém [1989] examine various options of
boundary conditions and evaluate the rates of solution convergence (well-posedness)
associated with appropriate choices of boundary conditions. Other theoretical studies
of boundary conditions include Kreiss [1970], Strickwerder [1976, 1977], Gustaffson
and Sundstrom [1978], and Engquist and Gustaffson [1987], among others.

6.8 EXAMPLE PROBLEMS

Since benchmark problems using the central schemes, low and high order upwinding
schemes including MUSCL, TVD, FCT, and ENO have been amply demonstrated in
the literature, no attempt is made to include them here except for a simplest example
for the benefit of the beginner. FDM applications of the FDV theory for high-speed
flows have not appeared in the literature, and so they are illustrated in this section.
Some incompressible and compressible flow problems using the FDV theory via FEM
are presented in Section 13.7.

6.8.1 SOLUTION OF EULER EQUATIONS

In this example, solutions of Euler equations are given in a quasi-one-dimensional
nozzle with variable cross section, NACA 1135, using McCormack explicit scheme and
flux vector splitting method.

Given:
S(x) = 1.398 + 0.347 tanh(0.8x — 4)ft* (NACA 1135)
vy=14
2
R—1716L _
sec? R
Case 1

Supersonic inflow — supersonic outflow.

Boundary Conditions
Inflow

M=15

p = 1000 pst

p = 0.00237 slugs/ft?

pu = 2.7323 slugs/ft? sec
p E = 4075 slug/ft sec?
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Outflow. Full extrapolation of U is required since all eigenvalues are positive.

Initial Conditions

p = 0.00237
pu =2.7323 0<x<10
pE = 4075

Case 2
Supersonic inflow — subsonic outfiow.
Boundary Conditions

Inflow — same as before
Outflow — u = 390.75 ft/sec.

Other quantities are extrapolated since two eigenvalues are positive.

Initial Conditions
p = 0.00237 p = 0.00237
forx <281 pu=27323, forx > 281 pu=0.92608
pE = 4075 pE = 2680.93

Results: The computational results for both the McCormack and flux vector splitting
methods are shown in Figure 6.8.1.1a for Case 1 and Figure 6.8.1.1b for Case 2. The
solution for both methods was obtained using a total of eighty grid points.

Case 1
Both schemes demonstrate a good level of accuracy, with the flux vector splitting
scheme converging faster than the McCormack explicit scheme.

Case 2

Here again we find that the flux vector splitting scheme converges faster than the
McCormack explicit scheme, but the level of accuracy is not as good as in the first case
(supersonic outflow). In this case, the solution exhibits dispersion errors at the shock.

6.8.2 TRIPLE SHOCK WAVE BOUNDARY LAYER INTERACTIONS USING FDV THEORY

The FDV theory is utilized to analyze the flowfield produced from a triple shock/
boundary layer interaction using 3-D FDM discretization [Schunk et al., 1999]. Flow-
fields of this nature are often encountered in the inlets of high-speed vehicles such as
the scramjet engine of NASA’s Hyper-X research vehicle. For this analysis, the FDV nu-
merical results are compared to the experimental measurements and FDM calculations
via k — € turbulent model reported by Garrison et al. [1994]. As indicated earlier, the
FDV theory is expected to simulate turbulent flow accurately if DNS mesh refinements
are provided. However, such mesh refinements are not available at the present time due
to limited computer resources. No turbulence modeling is used in the present analysis.
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22 " 1100
Flux-vector splitting
- 2.1 -A——MacCormack 1000
_g 2t NACA 1135
g | § 900
2 19 2 800
< 18} 2 700 |
S &
> .77 & 600 [
1.6 500 |
1.5 400 |
1. — -
Y 2 4 6 8 1o 300, 4 6 10
x(ft.) x(ft.)
2
&
3
0O
2500
5 2000 1
£
o
g 5 1500 ¢
= A
o 5
s £ 1000 +
=
500
0 . .
0 2 4 6 10 0 2 4 6 10
x(ft.) x(ft.)
0.0045 F\ux'-vectorsp\ittmg i —
= — = MacComack .
0.004 3 o
2 0.0035
& 0.003 |
3
= 0.0025 ¢
0.002 |
0.0015 |
0.001 2 4 6 8 10
x(ft.)
(b)

Figure 6.8.1.1 Quasi—one-dimensional supersonic nozzle flow. (a) Case 1 supersonic inflow-supersonic out-
flow. (b) Case 2 supersonic inflow-supersonic outflow.
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120 mm

(a) (b)
Figure 6.8.2.1 Hypersonic aircraft inlet. (a) Wind tunnel model. (b) Inviscid fin shock reflection (top view,
x—z plane).

The wind tunnel model used to produce the triple shock/boundary layer interaction
consists of two vertical fins and a horizontal ramp as shown in Figure 6.8.2.1. The angle of
attack for the finsis 15° and the ramp is inclined at an angle of 10° with respect to the inlet
flow. The inlet flow is at Mach 3.85 with a stagnation temperature and pressure of 295K
and 1500 kPa, respectively. The fins are 82.5 mm high and are separated by a distance of
96.3 mm. The leading edge of the model is located 21 cm in front of the ramp inlet and
produces a turbulent boundary layer with a thickness of 3.5 mm at the inlet to the model.
Flow through the model is characterized by three oblique shocks originating from the
leading edges of the ramp and the fins. Above the oblique ramp shock, the twoinviscid fin
shocks intersect and reflect as shown in Figure 6.7.1b. For the purposes of this analysis,
the ramp is assumed to be 120 mm in length, the distance at which the reflected inviscid
fin shocks are just incident upon the exit corners of each fin. According to inviscid flow
theory, the fin shocks should intersect approximately 92 mm from the combined ramp
and fin entrance. Measurements of the flowfield structure in the x—y plane are made via
the Planar Laser Scattering (PLS) technique at various depths upstream of, coincident
with, and behind the inviscid fin shock intersection [Garrison et al., 1996].

A detailed PLS view of the corner shock reflection physics is shown in Figure 6.8.2.2
[Garrison et al., 1996]. As shown in the figure, the inviscid fin (a) and ramp (b} shocks
reflect to form the corner (¢) shock. Both the embedded ramp (d) and fin (g) shocks split
into separation (e.,h) and rear (f,i) shocks above the ramp and fin boundary/separation
layers. The ramp separated region (j) and the slip lines (k) dividing the different velocity
regions as induced by the shock structure are also visible in the image.

Since the two fins are symmetric about the centerline, only half of the wind tunnel
model is included in the computational model. Two finite difference computational
grids, varying in resolution, are developed for the FDV analysis. The coarse grid model.
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FLS lmage of Cormer Flow

Figure 6.8.2.2 Fintamp shock structure in the x-v plane [Garrison et
al.. 1996]. a) inviscid fin shock, b) corner shock, ¢) inviscid ramp shock,
d) embedded ramp shock, ) ramp separation shock, F) ramp rear shock,
gl embedded fin shock. h) separation fin shock, 1) rear fin shock, j) sepa-
rated region, k) sliplines.

consisting of a nonuniform nodal resolution of 31 x 41 x 55 (inthe x, v, and z directions)
is shown in Figure 6.8.2.3. The viscous grid is clustered close to the fin and ramp surfaces.
Results from the coarse grid analysis are used as the starting condition for the fine grid
model. The fine grid model is obtained by interpolating the flow variables against the
coarse mesh. Doubling the number of grid points in each direction produces a fine grid
with over 538,000 nodal points (61 = 81 = 109). Recall that the most important aspect of
the FDV theory is that the shock capturing mechanism and the transition and interaction
between compressible/incompressible, viscous/inviscid, and laminar/turbulent flows are
incorporated into the FDV formulation. No special treatments are required to simulate
these physical phenomena. Thus, the finite difference discretization requires no special
schemes. Simple central differences can be used to discretize the FDV equations given
by (6.5.14).

The inlet conditions to the model are fixed with the freestream conditions described
above (M = 3.85, F, = 1500 kPa, and T; = 295 K) and include a superimposed bound-
ary layer 3.5 mm in height. At the fin and ramp surfaces, no-slip velocity boundary
conditions are imposed and the normal pressure and temperature gradients are set to
zero, In the symmetry plane and for the bounding surface on top (x-z plane), all of the

Caares Grid (56xd1x31) Fine Gnid | 108kl 21 )
Figure 6.8.2.3 Three-dimensional finite difference models

21
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X {meters)

Figure 6.8.2.4 Inviscid fin shock interaction.

| i t i

L JO
-0.02 0 002 004 006 008 01 0.12
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flow variables are computed such that the normal gradients vanish except for the normal
flux, which is explicitly set to zero. At the exit, all of the flow variables are extrapolated
from interior grid points.

In order to test the hypothesis that the FDV equations contain the necessary terms
to model turbulence, no turbulence model is included in the analysis. It is theorized
that turbulent fluctuations result from the interaction of the convective and diffusion
Jacobians present in the second order terms of the FDV equations as dictated by the
FDV parameters (s;, s, 53, s3). The conclusions drawn from this study will be limited
to predictions of the boundary layer separation height since the experimental results
contain no measurements of turbulent statistics such as spectral energy density versus
wave numbers, etc., since no Kolmogrov microscales are resolved in this analysis.

Density contours for the inviscid shock interaction (x-z plane, as viewed from above
the wind tunnel model) are shown in Figure 6.8.2.4. The 15° fins produce inviscid shocks
that are predicted to intersect and reflect approximately 97 mm from the ramp entrance
(as opposed to 92 mm as predicted by inviscid flow theory). The reflected shock does
not intersect with the exit corner of the ramp as expected. The discrepancy between the
numerical prediction and inviscid flow theory could be due to the secondary oblique
shock that is formed behind the fin shock (approximately 45 mm from the entrance).
This is apparently an anomalous condition and could be due to the formation of a
nonphysical boundary layer on the fin, possibly due to the discretization of the flowfield
close to the fin wall.

Static pressure contours for flow in x-y planes located 70 mm (upstream of the invis-
cid shock intersection) and 97 mm (coincident with the inviscid shock intersection) from
the combined fin/ramp entrance are shown in Figure 6.8.2.5. To match the experimental

wai  Figure 6.8.2.5 Static pressure contours in x—
v plane before (left) and coincident (right)
with the inviscid fin shock intersection.

wall
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Figure 6.8.26 Boundary layer separation on the ramp.
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images, the z locations of the x-y planes are scaled relative to the predicted inviscid fin
shock intersection. The numerical predictions upstream of the fin shock intersection
(left) correlate well with the experimental PLS images. Evident in the upstream figure
are the inviscid ramp and fin shocks as well as the corner reflection. The flow separation
from the ramp is also visible, appearing as concentric isobaric rings. Although not well
resolved, it appears that both the embedded fin and ramp shocks split into separation
and rear shocks above the respective surface separation/boundary layers. Coincident
with the shock intersection (see right), the inviscid fin shocks merge together in the sym-
metry plane. No curvature of inviscid fin shock is observed in the numerical predictions
as in the experimental results. The reflection of the corner shock about the symmetry
plane is observed, but the ramp embedded shock is much lower relative to the height
of the fin than in the experimental results. The ramp boundary layer separation is not
strongly resolved in the static pressure contours. It is important to note that these results
from the FDV theory qualitatively reveal the boundary layer separation predicted by
Garrison et al. [1996] using a k-e turbulence model.

An alternative view (Figure 6.82.6) of the flowfield in the symmetry plane
(y-z plane, x = 0) shows the boundary layer separation and the reflection of the fin in-
tersection shocks through the weaker ramp shock. No experimental imagery is available
to compare to this figure, but it is nonetheless informative. Boundary layer separation
appears to be approximately 5 mm at the exit.

More fundamental studies for validation of the FDV theory are presented in Chap-
ter 13 using FEM. Contour plots of the FDV parameters are shown to resemble the
actual flowfields of the supersonic compression corner flow. Transition between com-
pressible and incompressible flows is also demonstrated for the driven cavity problems.
Thus, these fundamental examples are not duplicated in this chapter. The reader is
invited to examine Examples (3) and (4), Section 13.7, for details.

6.9 SUMMARY

History of compressible flow computations using potential equations, Euler equations,
and the Navier-Stokes system of equations is long, and so is this chapter. Our focus was
to study how to capture shocks in both inviscid flows and viscous flows. In compressible
inviscid flows using Euler equations, we studied central schemes, first order upwind
schemes, and second order upwind schemes. Specifically, we examined the flux vector
splitting and Godunov method for the first order scheme and MUSCL, TVD, ENO,
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and FCT for the second order scheme. For compressible viscous flows, it is necessary
to solve the Navier-Stokes system of equations. We examined explicit methods, im-
plicit methods, PISO methods, preconditioning methods, flowfield-dependent variation
(FDV) methods, and other available methods. Exhaustive coverage of potential equa-
tion, Euler equations, and Navier-Stokes system of equations has been made available
in many other texts, particularly in Hirsch [1990]. Thus, in this text, only a brief sum-
mary of these topics is provided. The emphasis has been placed on the FDV methods,
anticipating that this theory be investigated more thoroughly in the future.

Currently, a limited amount of validation of the FDV theory is available. It has been
verified that (1) the FDV parameters are equivalent to the TVD limiters, (2) FDV param-
eter contours resemble the flowfield (Mach number or density contours), and (3) tran-
sitions and interactions between inviscid/viscous flows, compressible/incompressible
flows, and laminar/turbulent flows are characterized by the FDV process. Examples
demonstrating these fundamental properties are presented in Section 13.7. An extensive
and rigorous future research on FDV theory will be required not only for its own the-
oretical foundation, but also for closer examinations as to the relationships with other
methods.
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CHAPTER SEVEN

Finite Volume Methods via
Finite Difference Methods

7.1 GENERAL

Finite volume methods (FVM), often called control volume methods, are formulated
from the inner product of the governing partial differential equations with a unit
function, I. This process results in the spatial integration of the governing equations.
The integrated terms are approximated by either finite differences or finite elements,
discretely summed over the entire domain. Recall that we briefly discussed this subject
in Section 1.4 for one-dimensional problems.

One of the most important features of FVM is their flexibility for unstructured grids.
The traditional curvilinear coordinate transformation required for FDM is no longer
needed. Designation of the components of a vector normal to boundary surfaces in
FVM accommodates the unstructured grid configuration with each boundary surface
integral constructed between nodal points.

For illustration, consider the conservation form of the Navier-Stokes system of
equations

U F; 3G
= — +

R=—
dat + X; ax;

- B (7.1.1)

The finite volume equations are obtained as

oU dF; 0G;
ILR)= | RdQ = — 4+ — 4+ —-—-B|dQ =0 7.1.2
(. R) fg fgz(at+8xi+3x,- ) ( )
or
aU
f (—— —B) dQ—l—f (F; + Gj)mdl' =0 (7.1.3)
o\ 9t r

where n; denotes the component of a unit vector normal to the boundary surface.
Discretizing (7.1.3) and summing over all discrete nodes or cells (elements) throughout
the control volumes (CV) and control surfaces (CS), we obtain

Z (A—U — B)AQ + ;(Fi + Gi)n,-AF =0 (7.1.4)
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or

Y (AU— AB)AQ+ Y At(F; + G)m AT =0 (7.1.5)
cv cSs

The basic idea of FVM is to obtain a system of algebraic equations for the dis-
cretized control volume and control surfaces written such as in (7.1.5). In this process,
the conservation of all variables is enforced across the control surfaces. Thus, when a
specific quantity of a conserved variable is transported out of one control volume, the
same quantity is transported into the adjacent control volumes. As a result there is no
artificial creation or destruction of conserved variable. Inaccuracies that arise in coarse
meshes, therefore, are not the result of a failure of any variable, but rather are due
to approximation errors. Another advantage of FVM is that the discredited governing
equations retain their physical interpretation, rather than possibly distorting the physics
due to numerical discrimination of each derivative term.

The finite volume methods are cost effective, because the calculation of flows at
the surface of the adjoining control volumes need be performed only once since the
expression is the same for both control volumes, differing only in sign. This gives
rise to both cost reduction and algorithmic simplicity. In this chapter, finite volume
methods via FDM are presented. Finite volume methods via FEM will be discussed in
Chapter 15.

7.2 TWO-DIMENSIONAL PROBLEMS

There are two types of control volume formulations: the node-centered control volume
and the cell (element)-centered control volume. These topics are discussed below.

7.21 NODE-CENTERED CONTROL VOLUME

For illustration, let us consider the two-dimensional configuration as shown in
Figure 7.2.1a. Node 1 is connected to adjacent nodes 3,7, 9, 11, and 12. The quadrilat-
erals A, B, C, D, and E are subdivided by connecting midpoints of lines between nodes
with quadrants associated with node 1, forming the control volume for node 1 consisting
of subcontrol volumes CV; A, CV B, CV,C, CV; D, and CV; E. Directions normal to two
control surfaces of each element are identified by the arrows pointing outward, with
angles 6!* and 8'” in a subcontrol volume (Figure 7.2.1b).
Let us examine the FVM formulation for the Poisson equation,

ui—f=0 (=12 (7.2.1)
The finite volume equation becomes
f u,inde = / fdQ (722)
r Q
or
AB.C,D.E
=T A A
> (—”m + —-Lfnz) AT =" fAQ (7.2.3)
s Ax Ay cv

219



220

FINITE VOLUME METHODS VIA FINITE DIFFERENCE METHODS

Figure 7.2.1 Control volumes and control surfaces. (a) Control volume at node 1 in unstructured grid system.
(b) Control surfaces between nodes 1 and 7. (¢) Modifications required for points 7-1 on horizontal (x) line
and 9-1 on vertical (v) line.

The FDM discretization of (7.2.3) yields
(u7 — 1))S71 + (1o — 1) So.1 4 (ury — 1) Spia+ (U2 — wn)So1 + (us —ur)Ssa = fsh
(7.2.4)
with € being the sum of the control volume areas surrounding node 1,
Q=CVIA+CViB+CViIC+CVID+ CWVE

and S-. So1, etc. represent the surface parameters determined from the direction
cosines. For example, the surface parameter §;; associated with w7 — u; is given by

¢ BAF+ QAT (")+ GAF+ L AT ®)
= | COSYU— SiIny— COSg— simmoy——
& Ax Ay Ax Ay

7.1 7.1
_ Ayr11Ay@  Ax71AX(@g) 4 Ay71AYp) Ax7.1Ax(b)) (72.5)
A1 AL AQ7 4 AQ7 o

where (a) and (b) refer to the adjacent control surfaces in the counterclockwise di-
rection. Note also that Ay = (cos §AT)@ and Ax,y = (sinAT) refer to, respec-

tively, the y and x components of AT on the control surface for the control volume A
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Figure E7.21 FVM solution of the Poisson equation.

(see Figure 7.2.1b). Orientations of these surfaces are determined by the angle 6 of the
direction cosines always measured counterclockwise from the x-axis as defined in
Figure 7.2.1a. Note also that AXx71 = X7 — X1, Avi1 =y — vy, and Ay = Ax71Ay714,
etc. It should be cautioned that, if two points are horizontal or vertical (Ay =0 or
Ax = 0), as may be the case in Figure 7.2.1c, then we set

Ayrn 1 Axgr 1
Ax71Ay71  Axqy’ Axg1Ayg1  Ayg,

(7.2.6a)

This is to avoid division by zero (Ays,; = 0, Axy; = 0). For a node in a rectangular
geometry such as node 5 of Figure E7.2.1, the direction cosine is zero so that the division
by zero is avoided by setting

AXZ’S

A
sin 180°AT" = 0, Y65

cos270°AT =0 (7.2.6b)
25 AQ4 5

This restriction allows the FVM formulation to yield the result identical to the FDM
methods for rectangular grids. For all nonrectangular arbitrary geometries, the defini-
tions given in (7.2.5) should be used.

Detailed computational steps for a simple geometry (Figure E7.2.1) are demon-
strated in Example 7.2.1.

Example 7.2.1

Given: V?u = f(x, y), with the exact solution (u = 2x?y?), Dirichlet boundary
conditions.

Required: Solve using the finite volume method via finite differences (3 x 2 unit
square mesh, Figure E7.2.1). Dirichlet boundary data for all exterior boundaries and
the source term are calculated from the exact solution.

Wy, Uy, U3, Us, Uy, U1, = 0
Uy = 8, 7 = 32, Ujp = 72, Ui = 18
=8, f3=20
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Solution:
Au Au
Z (—m + ——nz) AT = Z fAS2
o5 \Ax Ay v
Y AuS=)" fAQ
CS cv
where
AT AT
g2
Ax Ay

We write the finite difference analogs at nodes 5 and 8 as
(1 — us)Sy.s + (ug — us)Se.s + (s — us)Sss + (ug — us)Sas = f5As
(ts — ug)Ssg + (g — ug)So.g + (11 — ug)Sii g + (U7 —ug)Sr8 = faAs
with

fsAs =8, [fgAg =20

B (a) (o)
s = [(s00 4 5) 7 (94 52)"
_ [ Ay25A)a) N Axz 5 AX(q) n A2 5AY ) N Axz sAX(p)
- A 5 AL 5 A2 s ASd s
Ay ] [BAyey 4] -1/2 7 =12
= 0 — = 4+ 0|=|——+0 —— 40| =1
Lsz.er _+Lsz.s+ -1 +_+_—1 - |
and
Axan] T Axpy 121 [ —1/27
So.5=|:0—l— @Wllo4 20 :[0+—/— Flo+ 22 =1
Ayesd L Ayes ] -1 1 L -1 ]

Ses=Sis=1, et

Solving the above two equations for nodes 5 and 8 with the boundary conditions
imposed, we obtain

i P Y
)= 13

which is the exact solution. For the structured orthogonal grids, the process is the same
as in FDM.

Example 7.2.2

Given: Same as Example 7.2.1 with Neumann data:

(%) _ 16, (3_”) _3
0x /4 ay/,
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Solution: The additional equation required at node 4 becomes

ou . ou + Au Au Au o
= - = = == =
ax |y Ayl AViss AXfy Axipy
Uspp—Us  UWipp— Uy U7 —Ug 1
16 +8 =201 =
YT T a2 a2 (2)
Combining equations written at nodes 3 and 8 from Example 7.2.1, we obtain
B —4 1 1 Us 8
1 -4 0 ug | =1 =30
1 0 -6 [ —46
Thus
[ us 1 24 6 4 8 2
ug | = ~36 6 23 1 =30 | =18
| u, 4 1 15| | —46 8

This is the exact solution. Note that for unstructured grids with sloped boundaries, spec-
ification of the Neumann boundary conditions must be adjusted for direction cosines.

7.2.2 CELL-CENTERED CONTROL VOLUME

In the previous section, we dealt with the case in which nodes are identified with the
surrounding subcontrol volumes (node-centered control volume). Instead of subcontrol
or tributary control volumes surrounding the node, it is possible to consider control
volumes constructed by adjacent nodes as shown in Figure 7.2.2a,b,c. Here, control
surfaces are identified between adjacent nodes for a structured grid system, leading
to the cell-centered control volume. However, this requirement lacks the generality
prevailing in the unstructured grid system.

For illustration, let us consider the cell-centered FVM scheme as shown in
Figure 7.2.2 for the solution of the Poisson equation examined in Section 7.2.1. The
corresponding FVM equation is given by (7.2.2).

Au Au
—n + —nz)AF = fAQ (7.2.7)
CZS (Ax Ay ;

This can be written for the cell-centered scheme in the form,

Au Au Au
—_— MmAU g+ | — WA g+ | — m Al
Ax /i Ay /Jiiin AX i1

Au At Au
+{— mAlge + | — mAlep + | — mAlcp
Ay )i, AX /i iin AYJiivip

Au Au
+ (—) mAIps+ (——“) mAl'py = (fAQ),“j (7.2.8)
Ax /iy, Ay /i

where Au/Ax and Au/Ay may be approximated by using tributary areas and
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S —“—FSH-I

- i+l

Figure 7.2.2 Cell-centered control volume. (a) Square or rectangular grids. (b) Skewed grids.
(¢) Curvilinear system.

corresponding boundary surface areas. For example, we have (Figure 7.2.2¢)
Au) 1
— = — Ui j120¥ 172
(Ax ijo12 A8 A’B’ZC’D’
= (i j-1Ayap +UupAypo + Ui jAYoD +UAAY D4 Y ARG 112

with

1
Ua= Z(”rxj Hdimr Uiy o)

1
g = Z(ui.j +Uip1; Uiy 1T ui.jfl)

Other quantities in (7.2.6) are calculated similarly. It can be shown that the above
procedure gives the identical results for the problem in Example 7.2.1. Note that the
cell-centered FVM presented here can not be applied to the unstructured grid shown
in Figure 7.2.1.

The cell-centered FVM scheme for Euler equations takes the form

)3 (A_U)AQ = -3 (FS), S =mAT (7.2.9)
cs

£\ AL
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This may be solved using the operator splitting scheme or the fractional step scheme:

(1) Operator Splitting Scheme

Step 1
—n+1 Af "
Step 2

1 —n+1 At —n+1 —n+1 —n+1 —n+1

1

U:H; = EI:U?] + Ui,j - E (Fi,]-+1Sj+1 + F,‘,j Sj + F,-+1,jSi+1 + F,'_j Si)
i.j

. . (7.2.10b)
These steps are repeated until steady-state is reached.

(2) Fractional Step Scheme
In this scheme, a half-time step is introduced in order to increase accuracy.

Step 1

—nt} . At

Ui,j = U[,j - "A_szi—;(Fﬁij+l + F‘Zj_lsj) (72113)

n4l 1 —nti At —nt+ i —n+i

Ut =5+ - f(F?.jilSm - Fszsf) (7.2.11b)
2 A

Step 2

—n+1 ! At ntl 1

U?:r = U:? T AQ, ‘(Fi_j'sz+l +Ff,+f]-5i) (7.2.11¢)

iJ

1 Ll At f—n+1 —nt1

Uil =3 [Uf? +U - o (S +F Sl-)} (7.2.11d)

iJ

Here, §;. Siy1, S}, Sj41 are the control surfaces as oriented by the direction cosine com-
ponents in the structured grid system.

7.2.3 CELL-CENTERED AVERAGE SCHEME

The cell-centered average scheme was proposed by Ni [1982]. To illustrate, we consider
the Euler equation written in the form

oU _ oF 3G

B ax ay

where
p pu pv
u=| P« po| PEew G=| P",
pv puy p+pv

p L pEu+ pu pEv+ pv
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Ay 1 Figure 7.2.3 Cell-centered average scheme.

The control volumes for two-dimensional problems are shown in Figure 7.2.3. The
change of flow variables U, for the control volume C is given by
At

AU, = i+ F))YAy — (F FA G+ G)Ax — (G (A
ZAx/_\y[(]+ DAy — (B + F)AyY + (G + G Ax — (Gr + G3)Ax]

(7.2.12)

The corrections to the grid points associated with the control volume C (distribution
formula) are determined by

1 At At }
U, =~ | AU, — —AF, — —AG,
®Ue =7 I Ue = 3y Ak Ay ¢
17 Af At }
(dU2). =~ | AU, — —AF. + —AG,
4 Ax
~ - (7.2.13)
(8U3) -—1 AU, + t/_\F ﬁ/_\G
3)c— 4 I C Ax ¢ Ay L-
17 At At i
b =—-| AU, + — AF. — —AG,
(Us)e 4 Ue+ Ax CA i
where
oF G
AF. = | — ] AU, AG, = — ) AU 7.2.14
(BU)C ¢ (BU)C ‘ ( )
and

For arbitrary curvilinear coordinates, the change of flow variables for the control
volume C takes the form

At F+ B G+ G2
AU = IR B e OV
U AQ{[ 5 (2= wn) 5 (x2 xl)]
[ F5 + F. Gy + G
B s = ) — = s — x)
|72 2
(G + G Fi + F. (7.2.15)
ATy —x) = 2w =)
|72 2
[ G + G3 b+ R
- T(Xs—xz)— 5 (s —»)
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with
AR = = 2[(m — 1) — 1) — (5 — )35~ ) (7.2.16)
The flow variables at point 1 are updated as
Ut = Ut + 80, (7.2.17)
with
d3U; = (8U1) 4 + (8Uy) 5 + (8Uy )¢ + (83U} p (7.2.18)

where A through D refer to control volumes surrounding the grid point 1. Here the
CFL condition is given by

. A A
At < min ( al , 4 ) (7.2.19)
| +a |v|+a

It should be noted that, for transonic and supersonic flows, an artificial viscosity must
be added for stability. For example,

1 At At _
oUp). = - | AU, — —AF,. — —AG, U-U 7.2.20
@0 = 7|0~ Trak. - a6+ u@- 1) (1220
with
— 1
U= Z(Ul +U; +Us +Uy) (7.2.21)
At At

=l —+ — 7.2.22

1t U(/_\x + Ay) ( )

where o is an artificial damping factor usually taken as 0 < o < 0.1.

It is seen that the corrections defined in (7.2.13) together with (7.2.20) guarantee
the proper domain of dependence regardless of local flow direction and wave speed,
leading to a stable second order solution.

7.3 THREE-DIMENSIONAL PROBLEMS

7.3.1 3-D GEOMETRY DATA STRUCTURE

For three-dimensional problems dealing with arbitrary unstructured meshes, an effi-
cient algorithm for data structure will be important. For illustration, consider the ge-
ometry shown in Figure 7.3.1, where all nodes are on the exterior global boundaries
except two interior nodes, 10 and 11. The control volume for node 10 and its con-
trol surfaces are represented in Figure 7.3.2. Let us examine any inclined control sur-
face arbitrarily located in three-dimensional reference coordinates (x, y, z) as shown in
Figure 7.3.3. Note that local cartesian coordinates (x’. v, z') are constructed such that
the x" — y’ plane coincide with the control surface. The origin is located at node 1 with
the x’ axis lying on the line connecting nodes 1 and 2. The 7’ axis is in the direction of
the unit vector n normal to the control surface. The y” axis can be determined once the
unit normal vector is known. The origin of natural or isoparametric coordinates (£, )
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Figure 7.3.1 Illustration of 3-D finite volume dis-
cretization, 2 interior nodes 10 and 11; all other
nodes are on the boundaries.

may be embedded at the controid of the quadrilateral so that the surface area can be
calculated easily.

The unit vector normal to the surface is found by establishing the unit vectors e
and e4 along the lines 1-2 and 1-4, respectively, as follows. Between nodes 1 and 2, we
have

e;n = Aji; (7.3.1)
where
X12 Y12 <12
M= =R =R
YT TP L, Laz

2 2 2\1/2
Lip = (x5 + i3 + 25)"
with x;2 = x; — x>, etc. Similarly, for the unit vector along the line on nodes 1 and 4,
we have

elq = i (73.2)

Figure 7.3.2 Control volumes and control
surfaces for the interior node 10; connected
neighboring nodes are 6, 14, 22, 30, 9, and
11.
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(L, 1

(x3, v3)

-1, 1)
(x4, ¥a)

? (-1,-1)

y (J(].yl)

Figure 7.3.3 Control surface on the natural (isoparameteric) co-
ordinates (£, ), oriented in terms of the local cartesian coor-
dinates (x', y', '), the unit normal vector coinciding with the

7' axis.
where
" X14 " V14 " <14
1 = b 2 = 4 3 =
Lyg L4 Lys

Ly = (x124 + J’124 + 254)1/2
with x14 = x1 — x4, etc.

The unit vector normal to the surface is given by the cross product of these two unit
vectors along the lines 1-2 and 1-4.

N =e X ey = &N\ i = nyii (7.3.3)
with

1= A3 — A3

12 = N3 — M3

13 = NP2 — A2p

To calculate the control surface areas surrounding the control volume such as in
Figure 7.3.3, it is necessary to carry out the coordinate transformation between the
local coordinates (x', y’, z') and the global reference coordinates (x, y, z), since the
control surface plane is located arbitrarily in the three-dimensional configurations.

X, =a;x, (7.3.4)

where a;; is the transformation matrix. The components of a;; corresponding to the x|
are the same as those for the unit vector ej,,

a” = }\], 012 - )\2, a13 - )\3

To determine the rest of the direction cosines, we must find the unit vector along the
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y axis. This can be done by the cross product of the normal vector (7.3.3) and the unit
vector along the 1-2 direction,

ey =N X € = Sfjkﬂ,')\jik = Yk ix (735)
with

Y1 = MmA3 — n3\;

Y2 = n3\i — A1A3

Y3 =n1A2 — naA
Thus, we have

a4y =Y ay =", a3 =3

azy = ny, az = Ny, asz = n3

The remaining task for the construction of data structure is the calculation of control
surface areas and control volumes.

Control Surface Area

A:ff dx’a’y’:fll ]:]1|J’|d§d~q (7.3.6)

with |J'| being the determinant of the control surface Jacobian (see Section 9.3.3 for

derivation),
ax’ @1_’
, at 0

/7] = £ £ (7.3.7)
am  an

x'=anx+apy+aisz (7.3.8)

Yy =anx+any+anz

x=dy(E ry (N=1,234) (7.3.9)

o= li-Bi-m  @= 01001 = 0+H0+)

Dy = %(1 —£)(1+m) (7.3.10)

with @y being the interpolation functions derived in Section 9.3.3. Substituting (7.3.10)
into (7.3.9), (7.3.8), and (7.3.7), we obtain

ox’ BCDN 8<DN BCI)N

T: =dain Exw + alZG_E'YN + 013¥ZN

o =4z &XN + azzécb—NyN + 0238—%21\1

08 08 9% 9 (7.3.11)
il :all?&xN‘l‘alZ@”)’N‘f’alsac}JZN

an an am am

8y’ HCDN 8<DN BCI)N

=gy —— Xyt an——yN+an— 2
an 21 = N AR T YN +an o N
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Integration of (7.3.6) can be carried out most accurately by using the Gaussian quadra-
ture, which is detailed in Section 9.3.3.

Control Volume

V= [f/ dxdydz = f_ll -[11 /]1 | |dEdndl (7.3.12)

ox v iz
d€ 9 9¢
ox dy 9z
J=|— — — 7.3.13
1 an dn dn ( )
ox dy bz
ag  aL dg

with | /]| being the determinant of the control volume Jacobian in terms of the natural
or isoparameteric coordinates (£, m, {) with reference to the global cartesian coordi-
nates (x, y, z) as shown in Figure 7.3.4. See Section 9.4.3 for derivation and details of
integration using the Gaussian quadrature.

The control surface and control volume for a three-dimensional geometry may be
calculated alternatively as follows. Referring to Figure 7.3.5, the surface area Ajpiq is
equal to one-half of the absolute value of the cross product between the diagonal unit
vectors times their corresponding physical lengths.

1
Aiza = [Ain| = ile13L13 X €24 Loy (7.3.14)

Here, the calculation of the components of the unit vectors follow the same procedure
as in (7.3.1) and (7.3.2). These surface areas should be oriented by the unit normal
vector calculated from (7.3.3).

Similarly, the control volume is equal to one third of the dot product of the sum of
any three adjacent surface area vectors and the unit vector times its physical length,

(-1,-1,-1) (1,-1,-1)

Figure 7.3.4 Three-dimensional control volume with hexahedral
isoparameteric coordinates.
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A 4378

Figure 7.3.5 Alternative method for calculations
of control surface areas and control volume.

connecting two nodes diagonally with one of them containing the three surfaces under
consideration.

1
V= g(Alm + A4z7s + Aissa) - €461

1

= g(ew L3 % e34L04 +€47L47 % €33 Lag + ;g Lig X es4Ls4) - €46 Lags (7.3.15)

in which node 4 is common to the three surfaces and node 6 is in the diagonal direction
constituting the unit vector ey, with all unit vectors calculated similarly as in (7.3.1).

7.3.2 THREE-DIMENSIONAL FVM EQUATIONS

Three-dimensional FVM via FDM can be formulated as a direct extension of the two-
dimensional case discussed in Section 7.2. A typical control volume element configura-
tion is shown in Figure 7.3.6. The cell-centered control volume procedure for the Euler

.

ol k)

(41, g+, k+1)

Figure 7.3.6 Three-dimensional discretization.

(r+1. 7. k+1)

S

e
(. k1) 1
S \ Z
r

1
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equation using the operator splitting and fractional step scheme is described below
[Rizzi and Inouye, 1973].

(1) Operator Splitting Scheme

Step 1
—n+1 At n
Ui,j,k = ?,j,k - _AQi jk(Fi,j,ka+1 + ng—l,ka
3 F?,j,kSl.+1 -+ F?—],j,ka -+ Fﬁj,ksk+1 -+ ng,k—ISk) (73163)
Step 2
1 —n+1 At —n+l1 —nl
1
:P;rk = ‘2'[ ﬁj,k + Ui,j,k - _AQ_- - (Fi.j+1,kSi+1 + Fi.j.ka
I,],
—n+l —n+l —nil —n+1
+F 1 St + S+ F o S +Fr ,._ksk)} (7.3.16b)
(2) Fractional Step Scheme
Step 1
Tts n At " 7
Ui,]‘,k = Ui,j,k - m(Ff,/,kSHl + Fi.j—l,ka) (7.3.17a)
i,
A+ 1 —ntl At f—ntl —=n+l
U= ili ?,j,k +Ui,j.;c T AQ vk(Fj,]'_i_lng]'-l-l + i,jj(Sj) (7.3.17b)
ij,
Step 2
J— +Z +l At 1 41 1
U= - m(FZﬁS,-H +E ) (7.3.18a)
i,
TR | PRV TR i— JAY SR =il
i,
Step 3
—n+1 +2 At n+2 Z
U?,j,k = :1,11 T A » (Fi,j,?cSkH + Fﬁi_lsk) (7.3.19a)
i,
1 2 —n+1 At i1 —n+1
n+1 _ = n+ -+ - + +
Stability conditions may be given as
At < min (At,, Aty, At;) (7.3.20)
with
. AL .k ]
At, < min = 7.3.21a
! I’f’k[(|q'si|+a5i)i,j,k ( )
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. AS;
Aty < mm[ Dk ] (7.3.21b)
Tk (g8 4+ aS;)i ik

AQ,',j,k :|
(g - Skl + aSi)ijk

At < r_nin[ (7.3.21c)
ik
where q and a are the resultant velocity vector and speed of sound, respectively.
The node-centered control volume approach as demonstrated for two dimensions

may also be used for three dimensions. We discuss this subject for the FDV equations
in the following section.

7.4 FVM-FDV FORMULATION

The FDV concept introduced in Section 6.5 can be used for the FVM formulation. To
this end, we begin with the FDV governing equations given by (6.5.14)

P 2
R:(I+E?—+E” i
8x,-

" AU n 7.4.1
H Bx,»axj) * Q ( )

The FVM integration equation is of the form

P 92
RS2 = I+ E— +E.— | AUM! "ldS2 =0 7.4.2
/;2 /Q |:( + ! ax; + " 8)Cj8xj') +Q ] ( )

Integrating (7.4.2) with respect to the spatial coordinates, we obtain

[ AU dQ + f (E,-AU”+1 +EijAU7ﬁ1) ndl = - f Q'd%2 (7.4.3)
Q r Q
or
Sauriag+ )y (BAUT 4 E, AU )i AT = —f Qdg (7.4.4)
cv cS 2
where
Q r cs
with
At?
H = A 6)). Y = 23+ b) (F) +G)) (7:4.6a.b)

Let us now illustrate the solution procedure (7.4.4) based on the node-centered
control volume as shown in Figure 7.2.1 and Example 7.2.1. The control surface compu-
tations on the left-hand side of (7.4.4) include terms with E; without derivative and
those with E;; with the first order derivatives and similarly for Hi and Hj; on the
right-hand side of (7.4.4). Thus, the FVM equation at node 1 for Figure 7.2.1 becomes



7.4 FVM-FDV FORMULATION
(with AU = W)
1 1
Y AQ + E(‘I’7 + )R+ (P7 —¥)S71 + 5(‘1’9 + W) Ry + (P9 — )8y

i 1
+ 5(‘1’11 +W)Ry g+ (P — )8 + i(‘I’z + W )Ry + (T — ¥)S,

1
+ 5(‘1’5 + W )Rs 1 + (Ws —W)Ss| = —Q (7.4.7)
where
Ryi = [(Exm AT + ExmAT)@ 4+ (Eyny AT + E;np AT)® || (7.4.8)
AT Al7@
E E — E E —
[( i + Exng) Ax + (Epng + Exm) Ay]

Sy, = (7.4.9)

AT Al ®
E;n E — E E —
+[( nng + z1nz)AX + (Ep2n; + zznz)Ay} .

with E; and E;; given by (6.3.31a) and (6.3.31b), respectively, etc., and - and .
calculated similarly as in (7.2.5).

The right-hand side terms of H are obtained in a manner similar to the left-hand
side.

Q =R7; +87, +R{; +S5 + R, | +5,, +RY + S +RY+8 (74.10)

— 1
Ry, = 5{[(H1n1 + Ham)AT); + [(Hyng + Hamp ) AT 1)@

1
+ E{[(Hlnl + Homp)AT'}; + [(Hin; + Hyng) AT, }®)

2. = {101~ () I 5 [0y = E I 5
1)y (1) w5+ [y — (s o |
{17 = 0o (e (B T
+[(Hy),s — (H21)1]n2%§ F[(Hs), — (sz)l]nzi—; }ibj (7.4.11)

with H; and H;; given by (7.4.6a,b), respectively.

The FVM equation at node 2 is written similarly and the solution for U+! for nodes 1
and 2 can be obtained with appropriate boundary conditions applied similarly, as demon-
strated in Examples 7.2.1 and 7.2.2. If all Dirichlet data are provided, then we have

Ki Kpl[au ™ _ (@] [Dl]
|:K21 Kzz] [AUZ] = [Qz] * 1, (7.4.12)

where D; and D, represent the source vector as a result of the Dirichlet boundary
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conditions. Note that K;; and K>, denote the collective sum of contributions for nodes
1 and 2, respectively, whereas K> and K are the interactions between node 1 and node
2. respectively,

1
Kp = -2-R2.1 - S
(7.4.13a,b)

1
Ky = le_z —Si2

Implementation of Neumann boundary conditions is carried out similarly as in
Example 7.2.2. If the Neumann boundary condition is prescribed at node 7, then the
FDV equations (7.4.12) will be modified to include AU as one of the unknowns with
the Neumann data directly imposed on the right-hand side of (7.4.12).

For three-dimensional applications such as in Figure 7.3.1, FDV equations in terms
of FVM are written similarly as in 2-D, following the procedure of (7.4.7) through
(7.4.13). For example, at node 10 (Figure 7.3.1), the adjacent nodes connected to node
10 are as shown in Figure 7.3.2. Direction cosines of the normal vector are calculated
(Figure 7.3.3), with control surface areas and control volumes determined as described
in Section 7.3. Let us examine the FDV finite volume equations at node 10 (Figures 7.3.1
and 7.3.2).

1 1
WA + 5(‘1’6 + Wi9)Re 10 + (¥ — ¥10)S6.10 + 5(‘1’14 + W10} Ria.10
1
+(Uyy — T9)S14.10 + E(‘I’zz + W10 Roz10 + (W22 — Wi0)S22.10
1 1
+ 5(‘1’14 + W) R0+ (Tis — ¥i0)S1a10 + E(‘I’f) + W10) R9 10

1
+(Po — ¥i0)So.10 + -2-(‘P11 @) R0 + (T — Pio) S0 = —Quo (74.14)

R (Eim AT + EpmAT + Esns AT) + (Eim AT + Eymp AT + EansAT)®
10 =
+(Eim AT + Exm AT + Esns AT)) 4 (Eym AT + Exmy AT + Eans AT |
(7.4.15)

AT AT Ar @
(Enm + Enny + Exns) —— + (Enmy + Enno + Exny)— + (Epsm + Exnz + Exzns) —
Ax Ay Az
Al AT Ar®
+ [(Enm + Enna + Exns)— + (Epm + Enm + Epng)— + (Enfy + Exne + Exsng)—
Ax Ay AZ ]
S6 10 — 4 _ >
’ . AT Al Ar@
+ | (Enny + Enma + Es}";)ﬂ + (Epany + Epnz + E32n3)Ty +{(Eam + Exm + E33n3)A—Z

§ AT Al AT @
+ [(1111111 + Eainz + ES]”S)E + (Epn + Expy + Ezzna)Z; + (Epm + Exng + Ezsnx)A—Z

- 6,10
(7.4.16)

( 1 ) _ (AyAZ) ( 1 ) _ (/_\zAx) ( 1 ) B (AxAy)
AX /610 AQ Je1 \AY/s10 AQ Jo10 \Az/e10 ASE Jg 10

(7.4.17)

where (Ax)e.10 = |X6 — X10|, etc., AT being the subcontrol surface areas corresponding
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Control surface between
nodes 10 and 6

Figure 7.4.1 ~ Control surface [normal vectors (a), (b), (c), (d)]
between nodes 10 and 6 for the control volume containing
node 10 of Figure 7.3.1.

to the normal vector components designated by (a), (b), (), (d), and (AS)s 1y repre-
sents the subcontrol volume for node 10 toward node 6 (Figure 7.3.2). As indicated in
Section 7.2.1,if a cell is coincident with the x-, y-, or z-coordinate, then the left-hand side
quantities in (7.4.17) must be used. However, the right-hand side quantities are used
for the directions in which the coordinate components are zero to avoid singularities.

Similarly, we compute the right-hand side of (7.4.14) as in (7.4.10). The final form of
the FDV/FVM equations is similar to (7.4.12) corresponding to the two interior nodes
10 and 11 (Figures 7.3.1 and 7.4.1).

It should be noted that the node-centered scheme described above is capable of ac-
commodating any arbitrary unstructured grid system. Recall that in FDV equations,
all physical aspects of the flow for all speed regimes have been accommodated as
detailed in Section 6.5. Some applications of FDV methods via FVM/FEM are shown
in Section 15.3.

- —— Y ——— -

Grid Isobars Grid Isobars
(2) (b)
Figure 7.5.1 FVM/FDM solutions of Euler equations for flows over a circular cone
[Siclari and Jameson, 1989]. (a) Euler grid and computed isobars for a 20° circular

cone at M, = 2.0, a = 25°. (b) Euler grid and computed isobars for a 10° circular
cone at My, = 2.0, o« = 25°.
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(b)

Figure 7.5.2 FVM/FDM solutions of Navier-Stokes system of equations for flows over a circular cone
[Siclari and Jameson, 1989]. (a) Comparisen of Euler and Navier-Stokes crossflow velocity vectors for
a 10° and 20~ circular cones at M, = 2.0, a = 25°. (b) Computed Navier-Stokes isobars and entropy

contours for a 10° circular cone at M~ = 7.95. a = 12°, Re =3.6 x 10°,
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7.5 EXAMPLE PROBLEMS

(1) Solution of Euler Equation Using FVM/FDM

The work presented here is reported by Siclari and Jameson [1989] on a node cen-
tered, finite volume, central difference scheme to solve the Euler equations, High-speed
flows over a circular cone using spherical coordinates are investigated with FVM/FDM.
To expedite the solution convergence, they used multigrid methods, which will be dis-
cussed in Section 20.2.

Figure 7.5.1a shows the (81 x 50) grid for a 20° circular cone with M., = 2.0 and the
cone angle of « = 25°. The resulting isobar solution shows that a weak crossflow shock
occurs on the lee side of the cone with attached flow.

The geometry and discretization (81 x50) for a 10° circular cone (My = 2.0, a =
25°) and the resulting isobar distributions are shown in Figure 7.5.1b. In this example, a
strong crossflow shock develops on the lee side, resulting in shock-induced separation.

(2) Solution of Navier-Stokes System of Equations Using FVYM/FDM
Siclari and Jameson [1989] solved the same problem above for the case of viscous flows.
This requires additional attention, providing refined discretization, and higher order
artificial dissipation as discussed in Section 6.3.

With the grid (81 x 68), the computed results are displayed in Figure 7.5.2a, compared
with the case of inviscid flow. For the 20° cone, the Euler solution shows attached flow,
whereas the Navier-Stokes solution shows a small separation. The Euler solution for
the 10° cone shows a shock vorticity induced separation. The Navier-Stokes solution
shows a more complex separated flow pattern including primary, secondary, and tertiary
vortices.

Figure 7.5.2b shows the computed isobars and entropy contours. The leeside bound-
ary layer separates at this incidence as indicated by the entropy contours.

7.6 SUMMARY

In this chapter, it has been shown that any finite difference schemes can be implemented
in FVM with either structured or unstructured grids. There are two advantageous
features in FVM: (1) Physically, the conservation of mass, momentum, and energy is
assured in the formulation itself; and (2) Numerically, unstructured grids and arbitrary
geometries are accommodated without coordinate transformation.

The conclusion appears to be that FVM s preferred to FDM for arbitrary geometries.
For structured grids, however, such conclusion is premature. Personal preferences may
persist for many years to come. The final outcome may be determined by convenience in
applications associated with computing techniques from the viewpoints of data structure
managements, which will be discussed in Chapter 20.
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FINITE ELEMENT METHODS

are presented in Part Three. We have seen in Chapter 1 that the finite ele-

ment methods based on the standard Galerkin integral lead to results identical
to those of the finite difference methods (FDM) for the examples of simple linear
problems. In dealing with nonlinear or convection-dominated flow problems in fluid
dynamics, however, the standard Galerkin methods are no longer adequate. Various
special strategies must be designed to assure stability and convergence. as we noted
also in FDM. Dissipation and dispersion errors can be minimized with a high level of
accuracy achieved in much the same way as in FDM. In this vein, the reader will see that
finite element methods are analogous to finite difference methods in dealing with all
aspects of the physics of fluids. Developments of both approaches in close alliance are
shown to be complementary to each other. It is with this expectation that our journey
begins.

F inite element methods (FEM) and topics related to finite element applications



CHAPTER EIGHT

Introduction to Finite Element Methods

8.1 GENERAL

The finite element theory as applied to one-dimensional problems was discussed in Part
One, Preliminaries. In general, finite element methods (FEM) are versatile in appli-
cations to multidimensional complex irregular geometries. Initial applications of FEM
began with structural analysis in the late 1950s and primarily were based on variational
principles. During the early days of the development of FEM, applications were made
for simple flow problems, beginning with Zienkiewicz and Cheung [1965], followed
by Oden and Wellford [1972], Chung [1978], and Baker [1983], among others. Signifi-
cant contributions in CFD began with the streamline upwind Petrov-Galerkin (SUPG)
methods [Heinrich, Huyakorn, Zienkiewicz, and Mitchell, 1977, Hughes and Brooks,
1982; Hughes, Mallet, and Mizukami, 1986] or streamline diffusion methods (SDM)
[Johnson, 1987], Taylor-Galerkin methods (TGM) [Donea, 1984; Lohner, Morgan, and
Zienkiewicz, 1985], and hp adaptive methods [Oden and Demkowicz, 1991], among
many other related works.

New approaches and various alternative methodologies are preponderant in the
literature. Efforts are made in this book to simplify and unify some of the terminolo-
gies. For example, the original approaches of SUPG or SDM for convection-dominated
flows have grown into GLS (Galerkin/least squares) when some changes in the for-
mulation are introduced. It is suggested that all methods related to numerical diffu-
sion test functions be called the generalized Petrov-Galerkin (GPG) methods. Hughes
and his co-workers have contributed significantly in the past two decades to the GPG
methodologies associated with the problems of convection-dominated flows and shock
discontinuities.

Another example is the algorithm arising from the Taylor series expansion such as
TGM. Zienkiewicz and his co-workers [Zienkiewicz and Codina, 1995] have applied
for the past decade the concept of characteristic Galerkin methods (CGM) which pro-
duce results similar to TGM 1n dealing with convection-dominated problems for both
compressible and incompressible flows.

The idea of treating discontinuities developed in the finite difference methods
(FDM) flux vector splitting, TVD, and ENO associated with the first and second order
upwinding can be utilized in the discontinuous Galerkin methods (DGM) as demon-
strated by Oden and his co-workers [Oden, Babuska, and Baumann, 1998]. Clearly, this
represents the merit of studying FDM and FEM closely together.
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Recall that in FDM we explored solutions for all-speed flows. Among them was
the concept of flowfield-dependent variation (FDV) methods [Chung, 1999] as de-
tailed in Section 6.5. This was an attempt to resolve transitions and interactions of
various physical properties such as inviscid/viscous, compressible/incompressible, and
laminar/turbulent flows. The same approach can be applied to FEM. It can be shown that
FDV methods are capable of generating most of the existing computational schemes in
both FDM and FEM.,

Although the various forms of Galerkin methods constitute the finite element meth-
ods in which the test functions are the same as the trial functions, there are other methods
where the test functions are different from the trial functions, generally known as the
weighted residual methods. Some examples include spectral element methods (SEM),
least square methods (LSM), and finite point methods (FPM).

The finite element literature is enriched with mathematical error analysis. Mathe-
matical proofs of convergence, stability, and accuracy are important in the so-called hp
adaptive methods in which accuracy improves as the mesh is refined and the approxi-
mating polynomial degrees are increased in accordance with the flowfield gradients. This
subject was developed by Babuska and his co-workers and Oden and his co-workers
for the last two decades.

In this chapter, the FEM formulation presented in Chapter 1 will be repeated with
more rigorous mathematical notations and expanded into multidimensional problems.
Definitions used in error estimates and convergence properties are also introduced in
this chapter.

The finite element analysis begins with the interpolation functions of the variables
for one-dimensional, two-dimensional, and three-dimensional elements of various ge-
ometries with linear and high order approximations, presented in Chapter 9. This will be
followed by linear steady and unsteady problems in Chapter 10 and nonlinear problems
with convection-dominated flows in Chapter 11.

In Chapters 12 and 13, we present FEM formulations for incompressible flows and
compressible flows, respectively. The major issues in CFD as observed in Part Two for
FDM are as follows: (1) Difficulties of satisfying the conservation of mass in incompress-
ible flows (incompressibility condition), resulting in checkerboard type pressure oscil-
lations; (2) shock discontinuities in compressible flows; and (3) convection-dominated
flows in both incompressible and compressible flows. Mixed methods, penalty methods,
and pressure correction methods were developed to cope with the incompressibility
condition. On the other hand, the Taylor-Galerkin methods (TGM) and generalized
Petrov-Galerkin (GPG) methods have been successful in dealing with shock disconti-
nuities and convection-dominated flows. Recent developments include computational
methods capable of analyzing both compressible and incompressible flows by a single
formulation and a single computer code using the various schemes extended from TGM,
GPG, and FDV (Chapter 13), leading to “all speed flows.”

Weighted residual methods including spectral element methods (SEM) and least
square methods (LSM) are presented in Chapter 14. Finite point methods (FPM) using
only the nodal points without element meshes (meshless methods) are also discussed in
this chapter. The finite volume methods (FVM) via FEM are elaborated in Chapter 15.

Finally, in Chapter 16, we examine some of the significant analogies between FDM
and FEM. Most of the existing computational schemes in both FDM and FEM are shown
to be special cases of the flowfield-dependent variation (FDV) methods. There are many
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numerical methods other than the FDM, FEM, and FVM which are based on the stan-
dard Eulerian coordinates. They include boundary element methods (BEM), coupled-
Eulerian-Lagrangian (CEL) methods, particle-in-cell (PIC) methods, and Monte Carlo
methods (MCM). For the sake of completeness, these methods are briefly discussed in
Section 16.4.

8.2 FINITE ELEMENT FORMULATIONS

The basic concept of finite element formulations was presented in Chapter 1, for simple
one-dimensional problems, using the Galerkin methods. In the Galerkin methods, the
variable of the partial differential equation is approximated as a linear combination of
the trial (interpolation, shape, or basis) functions. It was shown that local properties
were assembled into a global form by superposition intuitively. In this chapter, we
demonstrate this process directly from the global form using Boolean algebra, with the
local properties then arising indirectly as a consequence.

For simplicity of illustration, let us consider a one-dimensional domain as depicted
in Figure 8.2.1. Let the domain be divided into subdomains; say two local elements in
this example. The end points of elements are called nodes. The finite element model Q

T Q T
Given

o o

0<x<1

Q=QuT

e=1 e=2
o o o Global nodes Z_ (OL =1, 2, 3)
1 2 3 Global elements
< L >
e e (e) _

o 1 o o 2 o Localnodes Zy (N =1, 2)

Local elements

(1) (2)
U, U, -
u,
(1)
U, ) (2) Local variable
u"(x) u?(x) | distributions (linear)
1 2 1 2

Figure 8.2.1 Finite element approximations.
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is expressed as the union of the domain €2 and its boundaries I,
a=qJr (8.2.1)

We now isolate all elements from the global domain. Each local element Q, is
identified as

Qo= Jr.

The boundaries of this element and the neighboring element are the intersection
L[ Ty =T

Thus, the connected finite element model (8.2.1) is the union of all elements

Q=

(4

Q. (8.2.2)

E
=1

where E is the total number of elements. The global nodes of the connected model Q and
the local nodes of isolated elements are identified by Z, (« = 1, 2, 3, being the number
of global nodes) and z%)(N =1, 2, being the number of local nodes) withe = 1, 2, being
the number of local elements, respectively. They are related as follows:

Zgl) =71, Zgl) =7, zf) = 2>, zf) = 73,

Writing these relations in matrix form yields

2 oo oo]? 21 o1 0|7

2 :[0 1 o} Za & :[O 0 1] i (8.2.3a,b)
We may express (8.2.3a,b) as

& =AM Ze (N=12 a=123) (8.2.4)

where N is the free index capable of producing N number of independent equations
corresponding to its range (2 in this case, resulting in two equations) and the repeated
(dummy) indices « are summed throughout their range (3 in this case, resulting in three
terms), known as the index notation or fensor notation. The symbol Aﬁf,g is called the
Boolean matrix having the property:

A _ 1 if the local node N corresponds to the global node «
Ne ™10 otherwise

Similarly, we may write
Zo = A% (8.2.5)

where Agf,l in (8.2.5)is seen to be a transpose of AS\‘,L in (8.2.4). This transpose is achieved
by the repeated index N in (8.2.5) arising with the first index of the Boolean matrix in
contrast to the repeated index « in (8.2.4) arising with the second index of the Boolean
matrix. Note that this is typical of index notation, different from the matrix notation.
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Inserting (8.2.4) into (8.2.5) yields

Zo=0085, 2, (8.2.6)
from which we obtain the relation
A(]\E}LA%L = B (8.2.7)

where 8.4 is the Kronecker delta,

§ . — 1 ifa=p
710 Hazp

Likewise, substituting (8.2.5) into (8.2.4) gives

2y =AY (8.2.8)
Once again, we obtain

A A =By (8.2.9)
In matrix notation, the above relation shows that

1 0

10 0} [1 o]
0 1]|= (8.2.10)
[0 Lofly g 0 1

The use of Boolean matrix Agf,zx will prove to be convenient in derivations of finite
element equations, relating the properties between the local and global systems. How-
ever, in actual executions of finite element computations, these Boolean matrices will
never be constructed but instead are replaced by computer programs based on local
and global node number correspondence.

It should be noted, at this point, that we make use of tensor notation in which a free
single index implies the components of a column vector whereas free double indices
denote a matrix with its size determined by the ranges of the indices. The free index
must match at both sides of the equality sign within an equation. The advantage of using
tensor notation in FEM will become obvious as we develop finite element equations
more extensively in later chapters.

To obtain the finite element equations, the concept of classical variational or weigh-
ted residual methods is used. Toward this end, we require suitable functions for the
variable to be approximated locally within an element or subdomain. This is in contrast
to the classical variational methods or weighted residual methods where the global
approximating functions are used, in which the satisfaction of boundary conditions is
difficult, if not impossible, for complex geometries.

Suppose that the variable ©# may be approximated linearly within a local element e,
(0 < x < h), as shown in Figure 1.3.1, Figure 8.2.1, Figure 8.2.2:

W (x) = & (x)uY (8.2.11)

where @Sf}) (x) are called the local element trial functions [interpolation functions, shape
functions, or basis functions as shown in (1.3.3)]. For simplicity, the argument (x)
will be omitted in what follows unless confusion is likely to occur. They have the
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properties

(8.2.12)

2
0<soP <1 Y ol=1. o) =syy
N=1

The local nodal values can be related to the global nodal values in a manner similar
to (8.2.4):
(8.2.13)

0 = o
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Thus, for the total number of elements, E, the global function can be written as the
union of all local element contributions:

E E E
U= U u(e’) = U (Dgs)ussf) = U @%)Agf,iua (82143)
e=1 e=1 e=]
or
u= Dyt (8.2.14b)
where @, is called the global trial (interpolation, shape, or basis) function,
E
0, =|_J oAk (8.2.15)
e=1
with
So(Z3) =8 (8.2.16)

It follows from (8.2.15) that the expanded form of (8.2.14) appears as shown in
Figure 8.2.2b,c. Note that the union operation in (8.2.14) and (8.2.15) is subject to
the constraint (8.2.16). Thus, (8.2.14) through (8.2.16) lead to u = u; at node 1, u = u, at
node 2, and u=u3 at node 3. The union operation implies a Boolean summing rather
than algebraic summing in this process.

With these preliminaries, we are now prepared to revisit the differential equation
(1.2.1) for a more formal approach to the finite element solution process. There are
two options for the formulation of finite element equations: (a) variational methods
and (b) weighted residual methods. In the variational methods, we minimize the varia-
tional principle for the governing differential equation, which is a common practice in
structural mechanics. Unfortunately, however, variational principles are not available
in exact forms for nonlinear fluid mechanics equations in general. Thus, it is logical to
seek the weighted residual methods in fluid mechanics where the variational principles
are not required. The basic idea of the weighted residual methods is to construct a
mathematical process in which the error or the residual of the governing differential
equation(s), R (for example, R = V2u), is minimized to zero. This can be done by form-
ing a subspace spanned by test functions or weighting functions, W,, and projecting the
residual R orthogonally onto this subspace. This process is known as the inner product
of the test function and the residual, which can be expressed as follows:

1
(WQ,R):f WyRdx=0, 0<x <1 (8.2.17)
0

where the test functions W, are known also as weighting functions. The integral given by
(8.2.17) implies that the error at each point in the domain orthogonally projected onto
a functional space spanned by the weighting function summed over the entire domain
1s set equal to zero. This process will provide necessary algebraic equations from which
unknowns can be calculated. Thus, the finite element method is sometimes called the
projection method.

If the test functions W, are replaced by the trial functions ®,,, then the scheme is
known as the Galerkin method,

1
(Do, R)_—_[ ®,Rix=0 0<x <1 (8.2.18)
0
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Note that @, act as trial functions in (8.2.14) but are treated as test functions in (8.2.18).
Formulations with test functions different from trial functions such as in the generalized
Petrov-Galerkin methods will be discussed in Chapter 11 for nonlinear or convection-
dominated flows.

For the purpose of illustration, let the residual be given by the differential equation
(1.2.1a). We then obtain the so-called global Galerkin integral,

dx?

(Do, R) = jol %(@ —2)dx=0 (8.2.19)

This is in contrast to the local Galerkin integral (1.3.4). Integrate (8.2.19) by parts to
arrive at the form known as the variational equation,

1

. d 4, d !
ud f ax - f 2P, dx = 0 (8.2.20)
0 0 0

q)aﬁ

dx dx

where du/dxi} is the global Neumann boundary condition to be specified either at x =0
or at x =1 if required. Note also that @, indicates the global boundary test function
defined only at x =0 or x =1, which is no longer a continuous function of x [Chung,
1978]. This is because the role of @, is no longer the same at boundaries as in the do-
main. It is important to realize that du/dx|j in (8.2.20) arises from the one-dimensional
assumption of the two-dimensional problem (Figure 8.2.3),

d? d d d du|!
ff —udxdyz d—udyzfd—ucosBdF:—EcosB:—Ii
X X X

dx? d dx |,

where the integral J. dI' is unity in one dimension, and
du du du
— =—cos0”=—(1 8.2.21
dx|,_; dx €08 dx( ) ( )
du du du
— =—cos 180° = —(-1 8.2.21b
dx|,_, dx cos dx( ) ( )

dT (infinitesimal boundary surface)
n (unit vector normal to
two-dimensional surface)

6 is measured counterclockwise

x=lorx=h
6=0°

Idealization to one
dimension from two
dimensions

Hypothetical two-dimensional
domain

_[ dy = I (cos0)dl = cosB

Isz unity for one dimension

Figure 8.2.3 One-dimensional idealization from hypothetical two-dimensional
domain.
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The above result is due to the one-dimensional idealization of two-dimensional prob-
lems presented in Chapter 10. An important application of the above development is
demonstrated for implementation of Neumann boundary conditions at the right or left
end nodes in Section 1.5. Substituting (8.2.14b) into (8.2.20) gives

Ldd, do ! « dul
{ f —de] Ug = — f DPDodx + Byt (8.2.22)
0 0 dx

dx dx 0

We recognize that the left-hand side integral of (8.2.22) represents the first order
derivative, known as a weak form, reduced (weakened) from the original second order
derivative of the governing equation. The solution obtained from this weak form is
known as the weak solution.

At this time, it is informative to point out that the result similar to (8.2.22) can
be obtained using the variational principle approach [Chung, 1978]. The variational
principle for the governing differential equation (1.2.1a) is of the form

I :fol E(g—;‘)z —|—2u]dx (8.2.23)

In the variational methods, the above integral is minimized with respect to the nodal
value of the variable.

al
ol = Su, =0
g
Since du, is arbitrary, we require
ol
=0
dit,

It can easily be verified that the minimization (differentiation) of (8.2.23) with respect
to the nodal values of u, as indicated above results in (8.2.22) except that the Neumann
boundary condition must be manually added. This analogy does not exist in nonlinear
fluid mechanics equations, because the integration of the nonlinear convection term by
parts can not be carried out in an exact form.

With compact notation, we rewrite (8.2.22) in the form

KQBMB = Fa + Ga (8224)

where K.g is the global stiffness, diffusion, or viscosity matrix, F, is the global load
or source vector, and G, is the global Neumann boundary vector, as deduced from
(8.2.22):

1 E h (¢) (e) E
d®, ddg dd, ddy, (€) 1 (e) (©) Ale) A (o)
Ko =J, @ e W= U, T ax wdNadin = UKianaby
e= e=
(8.2.25)
1 E h £
Fy=— fo 2®udx = —|_ L 200dxal), = J FY L) (8.2.26a)
=1 e=1
| E h E
* du * du e
Go = du| = ¢§;>A5§3Xa = J6yal) (8.2.26b)
0 e=1 0 e—1
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where q>( ) is the local Neumann boundary interpolation function,
50 _ sk @)
Py =82y — zn), <1>N( ) =8wm (8.2.27)

indicating that <1) ) is the Dirac delta functlon at x = 0 or x = h, being unity at N = ZN
where du/dx 1s prescrlbed at node zy and zero elsewhere. This 1mplles that, if the

Neumann boundary condmon is to be applied to a node, then we set (b = 1 for that
node. Otherwise, we set q> = 0. Assembled in a global system, we obtain
o =8(Zu—Z),  DalZs) =g (8.2.28)

In this process, the Neumann boundary conditions are actually enforced between the ad-
jacent elements, with positive and negative gradients cancelled throughout the domain
(thus establishing the “energy balance” across the adjacent local element interfaces)
until the end point is reached. This is where the actual Neumann boundary conditions
are to be physically applied. This process is explicitly demonstrated by having con-
structed the FEM equations (8.2.24) in a global form instead of beginning with the local
form and assembling the element stiffness matrices to a global form afterward. This is
contrary to the traditional FEM formulations shown in other textbooks.

The global stiffness matrix (1.3.8), source vector (1.3.9), and Neumann boundary
vector (1.3.10) are now assembled from the local element properties as

_ - (D 1
K, K, Kz Ky K&z 0
Kep=| Ky Ky Ky |= Kgll) KSZ)—I—K(2 K
Ky K; K 2 2
n 32 33 L 0 K(Zl) ng)
1oy 1[1 _1} | oo]+ oY 1[1 _1Ho i o]
o offL-1 LIlo L o]y L=t Lo 0t
T1ro-1o
-1 2 -1 (8.2.29)
hl o -1 1
F £ 107 0 07 1
Fy=|F> FP+FP | =-]0 1 h[l}— 10 h[1]=_h 2
Fs FO 0 0 0 1 1
(8.2.30)

Y cos
— COS
dx

L 0hrgr | 01| du | du O du
= 0 1 + |1 —cosf=| @, | 5—cosf=| 0 | ——cosb
0 0] dx dx dx
0 0 0 &;3 0

(8.2.31)
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with 5)1 = 5)2 = <*D3 = 0 indicating that the Neumann boundary conditions are not to
be applied to any of the global nodes for the solution of (1.2.1a,b). This implies that,
if the Neumann boundary conditions are not applied, then the Neumann boundary
vector is zero even if the gradient du/dx is not zero. Recall that in Section 1.3 the as-
sembly of local properties into a global form was achieved intuitively. This has now
been verified with a mathematical rigor of Boolean matrices. In practice, however,
these Boolean matrices are never constructed, but they are replaced by computer
codes based on the nodal correspondence between global and local nodes as detailed in
(10.1.15¢,d).

For multidimensional problems, the formulation of the finite element equations is
carried out similarly as in one-dimensional problems. For example, let us examine the
Poisson equation,

R=Vu— f=0 (8.2.32)

The corresponding finite element equation takes the form

f DUy — £)dQ2=0 (8.2.33)
Q
/ Bt ;1 dl — f Pt dQ — f D, fdQ2 =0 (8.2.34)
r Q Q
or
Kugug = Fa + Ga (8235)
with
E
Ko = f b, Opid2 = [ ol 04 deal) Al (8.2.36)
Q o) IS
E
Fy = f o, fd2 = | f o faal) (8.2.37)
Q e—) YO
* £ *
G, = f by un;dl = U f d)Sf,)u_,n,-dl"Agf,‘)l (8238)
r e=1 ¢l

For two-dimensional problems, trial and test functions, ®\, are functions of x and yand
thus the Neumann boundary test functions, 5)55) are functions of one dimension around
the boundary contour. This will require the numerical integration around the bound-
aries. Step-by-step details of assembly for applications to multidimensional geometries
will be presented in Chapter 10.

Before we proceed further, we must recognize the special mathematical and physical
implications of the expression given by (8.2.34). This is the variational equation or the
weak form of the original governing equation (8.2.32), which is the two-dimensional
form of (8.2.20). Physically, if the residual (8.2.32) represents the force, then the integral

given by (8.2.33) implies the energy contained in the domain Q. Once integrated by parts
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asin (8.2.34), the consequence implies the energy balance between the domain Q and the
boundary surface I' containing the Neumann boundary conditions (normal gradients
of i). Thus, the physical consequence of the variational equation (or energy) allows us
to add any number of physical constraints in variational forms. These constraints can
be those terms playing a role of numerical diffusion (viscosity) as necessary. Many of
the recent developments of FEM take advantage of this variational concept, which we
shall discuss in greater detail in later chapters.

Unfortunately, the Galerkin methods described in (8.2.33-8.2.35) lead to unstable
and inaccurate solutions in fluid dynamics equations in which the flow is convection-
dominated. In this case, we must use the methods of weighted residual (MWR) with
test functions W, chosen differently from the trial functions @, such that

(Wy. R) = [ W, RAQ =0 (8.2.39)
Q

Thus, the determination of the most suitable test functions W, remains the crucial task in
order to be successful in dealing with convection-dominated flows. The most commonly
used test functions are the Galerkin test functions @, plus the numerical diffusion test
functions W,. In this case, the finite element equations are of the form,

(P + Vo). R) = fg (o + W) RAQ =0 (8.2.40)

Here, the numerical diffusion test functions ¥, play a role of numerical viscosities, equi-
valent to those used in FDM formulations. Some specific applications include streamline
upwind Petrov-Galerkin (SUPG) methods, Taylor-Galerkin methods (TGM), general-
ized Petrov-Galerkin (GPG) methods, characteristic Galerkin methods (CGM), discon-
tinuous Galerkin methods (DGM), and flowfield-dependent variation (FDV) methods,
discussed in Chapters 11 through 13.

For multidimensional time-dependent problems, R; = ddl/ +viivi—vii— [ the
general approach is to construct a double inner product of space and time in the form,

(W(E), (P + Vo). R))) :LW(g)L(cbﬁwa)R,-deg:o (8.2.41)

where W(£) is the temporal test function approximating the temporal variation be-
tween the discrete time steps with £ being the nondimensional time variable. Note that
the temporal approximation used here is independent of and discontinuous from the
spatial approximations. Details on transient time-dependent problems with and with-
out convection will be presented in Chapters 10 through 14 for linear and nonlinear
cases.

8.3 DEFINITIONS OF ERRORS

Definitions of errors and error estimates for finite element methods have been well
developed since the early 1970s. Finite element computational errors are defined in
various norms. The most frequently used error norms are the pointwise error, /.; norm
error, and energy norm error. These error norms are the special cases of the more
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rigorous and general norm, called the Sobolev space norm, which can then be simplified
into more meaningful and practical error definitions.

Sobolev Space (W,") Norm Error
Let us define the giobal node error ¢, as

€ = Uy — Uy (8.3.1)

where u, and ii, denotes the finite element approximate solution and exact solution,
respectively. Then, the Sobolev space norm error is defined as

([l () (N e

where m denotes the highest order of the weak derivatives of the 2mth governing
equation and p represents the power to which the derivatives are raised. Here, weak
derivatives refer to the order m, m — 1, ...0. The Soboley space ( W;’) is defined as
the functional space which includes all weak derivatives with p integrable functions,
0<p=<oo.

Hilbert Space (H™) Norm Error
The Hilbert space (H™) is the Sobolev space (W) with p equal to 2, H™ = Wj™.
Thus

de\* d2e\* dme\? :
leflim = Nellwy: = [[ [ez + (a) + (W) - (dxm) ]dx (8.33)

It is seen that the Hilbert space is the square integrable function (p = 2) complete in
the inner product space.

Energy Norm Error

The energy norm error, |le|| ¢ is a special case of the Hilbert space norm error H™
in the 2mth order differential equation. Thus, for the fourth order equation (m = 2), we
have

1
de \* d*e\* ?
lels = el = lellys = [f[eu(a) +(dx2) ]dx} (834)

Notice that, for the second order differential equation (m = 1), we write

lelle = llellr = el = {/ [e2 T (%)z] dx}; (835)

which can be written in terms of nodal errors ¢, with e = ®,e,,

1

dd, dd ’
lell e = ‘/ [fba% + d—;]dxeaeB] (8.3.6)
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Here, as usual, the global interpolation functions are obtained by means of assembly of
the local interpolation functions Cbgf,).

L, Space Norm Error
The L; space arises from the Banach space (L,) with p = 2, equivalent to the Hilbert
space ( H™) with m = 0. Thus

1
2
lell, = llellmo = llellwe = (f ede) (8.3.7)

in which no rates of change of errors are involved.

p-Norm (Banach Space Norm) Error
The Banach space (L)) is defined as the complete normed linear space such that

jet, = ( [ erax)

For p =1 and p = oc, we obtain L and L, norms, respectively,

lell., =f€deZ(|€1I—I—|€2|+~--+ leal) (8.3.8)

j=1
lellr, = max lej] (8.3.9)

It should be noted that the L, norm is a special case of the Banach space norm
(p = 2), and is one of the most widely used error norm. Other norms of Banach space
(other than p =1, 2, oo) are seldom used in practice.

Pointwise Error or Root Mean Square (RMS) Error
This is the simplest form of an error definition given by

i

lellrRms = (Z 62)5 = (€ata)’ (8.3.10)
Here the percent error may be defined as
lello, = JCIRMS (e“e“ ) (83.11)
(Z uZ)z MBMS

Note that there is no integral involved in this approach, thus it is called the pointwise
error, or often known as the root mean square (RMS) error.

Matrix Norms

Matrix norms are an important concept in determining the computational stability
of the finite element equations such as in (8.2.35) in terms of the so-called condition
number. To demonstrate this concept, we write (8.2.35) in the matrix form

Ku=F (8.3.12)
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If K is an n x n matrix and u any vector with n components, then there exists a
constant c such that

|Kull < c|[F] (83.13)

where u # 0, fju| > 0, and the constant ¢ is given by

K
. Kul (8.3.14)
full
The smallest ¢ is known as the matrix norm of K, denoted by | K||.
K
IK| < max I Ru (8.3.15)
[l
with the matrix norm being calculated from
Kl =max ) [Kegl, Kl = (KegKpa)'”, K|, = maxy | K|
B @
Combining (8.3.13) and (8.3.15), we obtain
IKu < [K|||ju (8.3.16)
If we define the condition number N as
N(K) = [K[IK | (8.3.17)

the following theorem can be established.

Theorem: A linearsystem of equations given by (8.3.12) is said to be well-conditioned
if the condition number as defined in (8.3.17) is small.

Proof: 1t follows from (8.3.12) and (8.3.16) that ||F|| < |K||lu|l. Let F #£ 0,u # 0.
Then, we have

Kl

— (8.3.18)

faf| = ]|
Let the residual be given by

R = K(u — @) (8.3.19)
Combining (8.3.16) and (8.3.19) leads to

lu— ) = [K™'RI < [K~'|[R] (8.3.20)
From (8.3.18) and (8.3.20) we obtain

lu—a | — IKI IR]]

< IKT IR < —= 1K™ [IIR]l = N(K)-——= 8.3.21
[Ju] [al] IFl ) IFl ( )

This proves that a small relative error results from the small condition number with the
system being well-conditioned. Otherwise, the system is ill-conditioned.
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Example 8.3.1
Given:
1
e -2
| -3
2
Required: Find the vector norms in Ly, L3, L.
Solution: |lel|,, = 8: el = VI8 el =3
Example 8.3.2
Given:
0 0 10 0
1 1 5 1
K= 01 5 1
00 5 1

Required: Find the matrix norms in Ly, Ly, L.
Solution: ||K| ., = max{1,2, 25, 3}=25;| K| ;,=+181;|K]l ;. = max{10, 8,7, 6} =10

Typical convergence properties are shown in Figure 8.3.1. It is seen in Figure 8.3.1a
that convergence is achieved at the point NV and that further refinements or the increase
of polynomial degrees do not affect the exact solution. The convergence to the exact
solution depends on the so-called mesh parameter. The mesh parameter £ is defined as
“diameter” of the largest element in a given domain. For one-dimensional problems, it
is simply the length h of the domain with 0 < & < 1. Let e; and e, be the errors for the
mesh parameters A, and h,, respectively. Assume that reduction of mesh parameters
results in the increase of the order p of the rate of convergence. This relation may be
written in the form (Figure 8.3.1b)

el hi\”
— = 8.3.22
lle2l (/’lz) ( )

Taking the natural logarithm on both sides, we obtain

_Injler| —In el
- 11’1h1 — lnhz

(8.3.23)

where the magnitude of p is indicative of the rate of convergence of the finite element
solution to the exact solution. In plotting the computed results to examine the con-
vergence, one may choose at least three different mesh parameters. They should be
chosen in the range where convergence to the exact solution has not been achieved as
illustrated in points 1, 2, and 3 of Figure 8.3.1a,b. The slope p is seen to be a straight
line with accuracy increasing with a steeper slope. If the mesh parameter is chosen too
small beyond convergence, the slope p will become horizontal (p = 0), such as points 4,
5, and 6 in Figure 8.3.1a. If computational round-off errors are accumulated due to the
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Solution at convergence
5 6
U(‘lu['{ \A 04 O
3 ]
: v
l
2 E Solutions beyond convergence
]
| :
r Solutions toward convergence
]
I
|
N
Number of elements, nodes, or orders of
approximations (linear, quadratic, etc.)
(a)
Slope (p)
4 5 6
- - OO0
Ine] \ 3 Infle]
Q.
2 7 ‘\\
1
—Inh —Inh
(b) (©)

Figure 8.3.1 Convergence toward and beyond exact solutions. Notice that the order (p) of
rate of convergence becomes horizontal (p = 0) for the solutions beyond convergence but
may turn negative (p < 0) due to round-oft errors. (a) Solutions vs. refinements, (b) Solutions
toward convergence. (¢) Solutions beyond convergence.

limitation of the computer through no fault of the computational methodology itself.
then the slope may tend to deviate from the horizontal line (point 7 in Figure 8.3.1b).
This is not an indication of deterioration of accuracy or rate of convergence, but rather it
1s meaningless to show the rate of convergence beyond the point at which convergence
has already been achieved.

In recent years, error estimates particularly in the adaptive A-p methods have been
studied extensively by Babuska and his co-workers [Babuska and Guo, 1988] and Oden
and his co-workers [Oden and Demkowicz, 1991], among others. Some discussions on
this topic will be presented in Chapter 19.

8.4 SUMMARY

In this chapter, we revisited Chapter 1 and reintroduced the finite element theory
with more rigorous mathematical foundations as applied to multidimensional problems.
Definitions of errors in terms of various functional norms and convergence vs. errors
have also been presented.
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Notations used in this book are designed in such a way that the beginner can un-
derstand the procedure of formulations and computer programming more easily, using
tensorial indices. This is in contrast to most of the journal papers or other CFD books
in which direct tensors or matrices are used. They are simple in writing, but confusing
to the beginner and inconvenient for computer programming. To alleviate these diffi-
culties, tensor notations with indices are used throughout this book.

Tensors with indices, although cumbersome to write, reveal the precise number of
equations and exact number of terms in an equation. From this information, all inner
and outer do-loops in the computer programming can be constructed easily, facilitating
the multiplication of matrix and vector quantities with specified sizes precisely and
explicitly defined.

If indices are not balanced, then the reader is warned that derivations of the
equations are in error and are possibly in violation of the physical laws. In this case,
the computer programmer is immediately reminded that it is not possible to pro-
ceed with incorrect indexing of do-loops. Moreover, a tensor represents the concept
of invariance of physical properties with the frame of reference, safeguarding the
physical laws, constitutive equations, and subsequently the computational processes as
well.

Instead of constructing finite element equations in a local form which are then
assembled into a global form as shown in Section 1.3, it is convenient to perform
global formulations from the beginning so that flow physics can be accommodated
in a global form easily in the development of complex finite element equations. The
direct global formulation of finite element equations will be followed for the rest of this
book.
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CHAPTER NINE

Finite Element Interpolation Functions

9.1 GENERAL

We saw in Section 1.3 that finite element equations are obtained by the classical approx-
imation theories such as variational or weighted residual methods. However, there are
some basic differences in philosophy between the classical approximation theories and
finite element methods. In the finite element methods, the global functional representa-
tions of a variable consist of an assembly of local functional representations so that the
global boundary conditions can be implemented in local elements by modification of the
assembled algebraic equations. The local interpolation (shape, basis, or trial) functions
are chosen in such a manner that continuity between adjacent elements is maintained.

The finite element interpolations are characterized by the shape of the finite element
and the order of the approximations. In general, the choice of a finite element depends
on the geometry of the global domain, the degree of accuracy desired in the solution,
the ease of integration over the domain, etc.

In Figure 9.1.1, a two-dimensional domain is discretized by a series of triangu-
lar elements and quadrilateral elements. It is seen that the global domain consists
of many subdomains (the finite elements). The global domain may be one-, two-, or
three-dimensional. The corresponding geometries of the finite elements are shown in
Figure 9.1.2. A one-dimensional element (as we have studied in Chapters 1 and 8) is
simply a straight line, a two-dimensional element may be triangular, rectangular, or
quadrilateral, and a three-dimensional element can be a tetrahedron, a regular hexahe-
dron, an irregular hexahedron, etc. The three-dimensional domain with axisymmetric
geometry and axisymmetric physical behavior can be represented by a two-dimensional
element generated into a three-dimensional ring by integration around the circumfer-
ence. In general, the interpolation functions are the polynomials of various degrees, but
often they may be given by transcendental or special functions. If polynomial expan-
sions are used, the linear variation of a variable within an element can be expressed
by the data provided at the corner nodes. For quadratic variations, we add a side node
located midway between the corner nodes (Figure 9.1.3). Cubic variations of a vari-
able are represented by two side nodes in addition to the corner nodes. Sometimes a
complete expansion of certain degree polynomials may require installation of nodes at
various points within the element (interior nodes). Thus, there are three different types
of nodes: vertex nodes in which only corner nodes are installed at vertices, side nodes
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(a) Discretization by triangular (b) Discretization by quardrilateral
elements . elements

Figure 9.1.1 Finite element discretization of a two-dimensional domain.

in which one or more nodes are installed along the element sides, and internal nodes in
which one or more interior nodes are provided inside of an element.

Nodal configurations and corresponding polynomials may be selected from the so-
called Pascal triangle, Pascal tetrahedron, two-dimensional hypercube, or three-
dimensional hypercube, as shown in Figure 9.1.4. Various combinations between the
number of nodes and degrees of polynomials for two-dimensional geometries can
be selected as illustrated in Figures 9.1.5 and 9.1.6. Similar approaches may be used
for three-dimensional geometries. In choosing a suitable element, the number of nodes

-— .
(a)
Triangular Rectangular Quadrilaterat
(b)
Triangular ring Quadrilateral ring

]

Tetrahedral Regular hexahedral Irregular hexahedral
(d)
Figure 9.1.2 Various shapes of finite elements with corner nodes: (a) One-
dimensional element; (b) two-dimensional elements; (¢) two-dimensional ele-
ment generated into three-dimensional ring element for axisymmetric geometry;
and (d) three-dimensional elements.
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(b)

Figure9.1.3 Quadratic elements. (a) Quadratic elements with straight edges.
(b) Quadratic elements with curved edges.

must match the number of terms in the polynomials, and must be symmetrically ar-
ranged. They must also be as complete as possible so that all possible degrees of freedom
are allowed to be present within the highest polynomial degrees chosen.

Types of finite elements may be distinguished by: (1) geometries (one-, two-, and
three dimensional); (2) choices of interpolation functions (polynomials, Lagrange or
Hermite polynomials), etc.; (3) choices of element coordinates (cartesian or natural co-
ordinates); and (4) choices of specified variables and gradients of the variables at nodes
(Lagrange family with variables alone or Hermite families with gradients included).
Earlier developments of finite element interpolation functions include Argyris [1963]
and Zienkiewicz and Cheung [1965], among many others. These and other topics will
be presented in the following sections.

9.2 ONE-DIMENSIONAL ELEMENTS

9.2.1 CONVENTIONAL ELEMENTS

The polynomial expansion for a variable u to be approximated in a one-dimensional
element may be written as

U= + X+ ozx’ + oagx’ + - (9.2.1)

For a linear variation of u, we need a two-node system with one node at each
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(a) Linear (3 nodes) (b) Linear (4 nodes) (¢) Linear (6 nodes)

(d) Quadratic (9 nodes) (e) Cubic (10 nodes)
(f) Quartic (15 nodes)

(g) Cubic (16 nodes) (h) Quintic (21 nodes)

Figure9.1.5 Various combinations between the number of nodes and degrees of poly-
nomials for two-dimensional triangular geometries.

end. The interpolation functions for this case were derived in Section 1.3, based on
Figure 1.3.1. An alternative method, perhaps the more general approach, is to use the
natural (nondimensional) coordinate, £, with the origin set as in Figure 9.2.1a (£ = x/ h)
or Figure 9.2.1b (§ = x/(h/2)). Then (9.2.1) becomes

=0y + of + o3 + o’ - (9.22)
For a linear element (two-node system), we have
U=a -+ azg (923)

Writing (9.2.3) at each node, solving for the constants, and substituting them into (9.2.3)
for an ¢lement, we obtain u(®) [ in element (e)):

ul®) = @ge)uge) + <I>g€)u;e) = CDE\H,)HS\F,), (N=1,2)
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Figure 9.1.6 Various combinations between the number of nodes and degrees of polynomials for
two-dimensional rectangular or quadrilateral geometries.

where the interpolation functions are

cpge) =1-¢, d)ée) =& for Figure 9.2.1a (9.2.4a)
o9 -ta_e,  e9-laie) forFigureo21b (9.2.4b)
1 =3 ) 2 =3 g - e
l 2 1 2
o- ) o —@

®_

Jgw
I
|
—
=
(S
|
I
- T
=
=
3]
Jaw
I
—_

v

(c) (d)

Figure 9.2.1 One-dimensional element. (a) Origin at end node (linear variation). (b) Origin at
center (linear variation). (¢) Origin at center node (quadratic variation). (d) Quadratic variation.
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Likewise, for quadratic approximations in which we require an additional node,
preferably at the midside (Figure 9.2.1c), we have

u=aq + wf + azé? (9.2.5)
and writing (9.2.5) at each node yields

Uy =oq — o + o3, Uy = oy, U3 =0 + 0y + az (9.2.6)
Evaluating the constants, we obtain

W = oFu” + 00 + oVl = Pl (N=1.2,3) (92.7)

where the interpolation functions are (see Figure 9.2.1d)

e 1 € [4 1
of=zEE -1 o =1-¢ o =€k +1) (9.2.8)

It is casily seen that the limits of integration of the interpolation functions should
be changed such that

h/2 1
e [ jofae=" [ e (929)
where x = (h/2)&. If the interpolation functions are derived in terms of nondimension-
alized spatial variables, then such a normalized system is called a natural coordinate.
Note that the basic properties of interpolation functions as given by (8.2.12) are satisfied
for both (9.2.4) and (9.2.8).

9.2.2 LAGRANGE POLYNOMIAL ELEMENTS

To avoid the inversion of the coefficient matrix for higher order approximations, we
may use the Lagrange interpolation function Ly, which can be obtained as follows. Let
u(x) be given by (Figure 9.2.2)

u(x) = Li(x)w + Lo(x)uz + - - - Ln(x)uy

1 2 3 N-1 N  N+1 n-1 n
o—O0—0— L-.—.—.7 —@ *—©o
. x |
< h :’
(a)
1 2 1 2
@ @ o— —(Or @

£=0 §=1 &=-1 £=0 E=1
(b) (c)

Figure 9.2.2 Lagrange element with natural coordinates. (a) Lagrange element of the n-1th degree ap-
proximation. (b) Linear approximation with origin at the left node. (¢} Linear variation with origin at the
center.
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where Ly(x) is chosen such that
Ly(xp) = dvm
Ly(x) may be expanded in the form

Ly(x) = en(x —x)(x — x2) (X —xno1) (X — Xnpr) - (x — Xn)

where
0 M#N
Ly(xy) = 1=cy H (xnv—xm) M=N
M=1,M#N

Solving for the coefficient ¢y and substituting it to the expression for Ly(x), we
obtain

A

(¢) _ _ X —Xm
oY) (x) = Ln(x) = M_R[MN T (9.2.10)
_ (x = x))(x —x2) - (x —xn)(x = xng1) - (0 = x)
(xn — x1)(xn — x2) -+ (v — X=Xy — Xn41) - (o — Xn)

with the symbol [] denoting a product of binomials over the range M = 1,2, ..., n (see
Figure 9.2.2). Here the element is divided into equal length segments by the n = m +- 1
nodes, with m and # equal to the order of approximations and the number of nodes
in an element, respectively. Let us consider a first order approximation of a variable u
such that

u® = Ly (N=1,2)

with
L — X — X :x_h=1_f
X1 — X2 —h h
Lazx_xl:f

X2 — Xq h

with x; = 0 and x, = A. If the nondimensionalized form £ = x/# is used, we have

. E—&m
Ly = (9.2.11)
and
£E—6 £E—§&
"TE—g . T h-k .

If the origin is taken as shown, at the center of the element (Figure 9.2.2¢) using the
natural coordinate system, we note that

1 1
Lz=§(1—§)7 I_in(l—i—&)
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These functions are the same as in (9.2.4b).
For quadratic approximations, we have n = m + 1 = 3 and

_ E-8)E-&) Y
b= & —&)E -&) 2(§ 2)(‘E D
_ E-8)E-&) B
NGO wE-1

_ E-EE-&) 1
b= (B —t)EG—&) 2t (§ 2)

L

For the natural coordinate system with the origin at the center, we obtain

1 1
Li=36E-1. L=1-8 L= fE+D)

which are identical to (9.2.8), the results one would expect to obtain.

The interpolation functions derived using the natural coordinates are convenient to
generate multidimensional element interpolation functions by means of tensor products
as shown in Section 9.3.2.

9.23 HERMITE POLYNOMIAL ELEMENTS

If continuity of the derivative of a variable at common nodes is desired, one efficient
way of assuring this continuity is to use the Hermite polynomials. For a one-dimensional
element with two end nodes, the development of Hermite polynomials for a variable u
begins with

u=o + wt + wt’ + oyé’

We write the nodal equations for u(£) and du(£)/d¢ at two end nodes and evaluate the
constants to obtain

(e)
@) = Hyou) + 155 ) (V=12 (92.12a)
N
or
W) =90, (r=1,2234) (9.2.12b)

where the Hermite polynomials have the properties [see Hildebrand, 1956]

H(Erg) = Swar. %H}xgm  Swu

Here Hy(£) and Hj,(£), which are now used as the finite element interpolation functions,
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-
)

#-7 2
), -0 H x=h
£=0 i E=1

Figure 9.2.3 Hermite interpolation functions.
are the cubic polynomials of the form (see Figure 9.2.3)

(e) HO =1— 3@;2 + 2&3 Ql — uge)

o) = 1Y =3¢2 - 26° 0, =u”

o) =Hl=¢ - 282+8 (= (BZ)(E) (9.2.13)
) (e)

o) = Hl =} - ¢ Q4—(§)

with &€ = x/h, h being the length of the element. Note that CDge) and <I>‘(f) must be multi-
plied by A, if the nodal values of derivatives are given by du/dx.

If the second as well as the first derivative is to be specified at the end nodes, we
require a fifth degree Hermite polynomial such that

u\ @ 2,7\ @
1 (E) = Hy(E)ul) H},(&)(?—JN + va(g)(g?)/v (9.2.14)

with
OE=HY =1 - 1067 +156* — 66> Oy =u’”

Y= HY = 108> - 15¢* + 687 0 =uf

(e)
CDge)ZI‘I]I —§— 6&3 + 8&4 _ 3§5 0= (3?)

. du\@
Of'=Hy = —4€> +7¢* - 3¢° Q= (af;)
2
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2,,\ (e
O = Hf = 2(82 367+ 3¢ — &) &=(93)

2 9E* /4
. 1 82 (e)
o) = M = (6 ~ 26 + &) 0= (55).

Note that ®, ¢!, and &, ©'” must be multiplied by # and #2, respectively, if the
nodal values of derivatives are given by du/dx, and 9°u/9x2.

Additional discussions of Hermite polynomials can be found in Birkoff, Schultz, and
Varga [1968].

9.3 TWO-DIMENSIONAL ELEMENTS

Among the two-dimensional elements, the triangular element was the first investigated
in the early days of development. In recent years, however, the four-sided isoparametric
element has become equally popular, or more convenient in some applications. Various
features of these elements are described below.

9.3.1 TRIANGULAR ELEMENTS

Asnoted in the one-dimensional element, we may use the standard rectangular cartesian
coordinates or the natural coordinates (nondimensionalized) to obtain the interpolation
functions. It will be seen that the choice of a particular coordinate system influences the
amount of algebra required in the formulation of finite element equations. For higher
order approximations (with higher order polynomials), an evaluation of constants is
particularly easy if natural coordinates are used.

Cartesian Coordinate Triangular Elements

In this element, the properties of the element are determined in terms of the local
rectangular cartesian coordinates (x;) with their origin at the centroid of the triangle
(Figure 9.3.1).

xi+x+x=0 and yi+y;+y3=0

Y A
(x_g, y;)

Figure 9.3.1 Cartesian coordinate triangular
element.

X, ¥

(X3, ¥2)
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or

3
Y xn=0 (N=1,23,i=12)
N=1
with xy1 = xy and xnz = yn. If this triangle is identified from the global rectangular
cartesian coordinates (X;) with their origin outside the triangle, we note that the fol-
lowing relationships hold:

1
x1=X1——§(X1+X2+X3)

1
szXz—g(X1+X2+X3)

1
)’2=Yz—§(YJ+Yz+Y3)

Or, combining these equations, we write
1 .
xni = Xni ﬂgjjéXM (N=1,2,3,i=12) (9.3.1)
Now consider the polynomial expansion of a variable 1® in the form
u = ay + ox + a3y (93.2)

This represents a linear variation of # in both x and y directions within the triangular
element. To evaluate the three constants a, oy, and a3, we must provide three equations
in terms of the known values of i, x, and y at each of the three nodes.

“ge) = o + pX] + a3
(&) _
Iy, " = oy + o +o3)

“ge) =) + aX3 + 033

Writing in a matrix form, we obtain
(e)

i 1 X1 M ol
=11 0 »n||e (9.3.3)
uge) 1 x3 y» [

Solving for the constants and substituting them into (9.3.2) gives

_ ()
]. X1 Vi ! ul
u®) = [1 X y] 1 o w» uge)
1 X e
3 W ug }

=(a+bx+ c]y)u(le) + (a> + box + czy)uge) + (as + byx + C3y)ug€)
= dDSF)u(le) + <Dge)u;(;) + Cbge)uge)
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or
W@ =oulY) (N=1,2,3)

where the interpolation function <D§f,) is given by

O = ay + byx + cyy (9.3.4)
= ﬁ(xw’fi —By) = @(h)’l —X1y3) a3 = iE|(x1yg —x2y1) (9.3.4a)
by = iD| (YZ ¥3) by, = Iﬂ()’% vi) by = |Fl(yl ) (9.3.4b)
L (45— x) (1) — ) L —x) (9.3.40)
= —(x3—X» 0= —(x —x ci3=—(—x 3.
C1 D D] 1— X3 3= D 2— X
with
1 X1 N
|IDl=det|1 xo ¥ |=2A S -
1 X3 V3

where Adenotes the area of triangle.

Note that the node numbers 1, 2, 3, are assigned counterclockwise in Figure 9.3.1.
If assigned clockwise, however, it is seen that the determinant |D| yields —2 A, twice
the negative area. Observe that the fundamental requirements of the interpolation
functions for one dimension,

Z oY =1 0= <1, ®Y(zy) =dwm

are also established in this case in two dimensions.
In view of (9.3.1) and (9.3.4a), we note that

a; = —-(xzy3 — Xx3y2)

! {(Xz——ZXN) (n—ljy) (Xz——ZXN)

)

1y1|E Mo 1\24 1
=\za)3|} & B=l551)3=3
1 X5 Y

Similarly, we may prove thata; = a» = a3 = 1/3.

If the variable u is assumed to vary quadratically or cubically, then we require ad-
ditional nodes along the sides and possibly at the interior. The evaluation of constants
would require an inversion of a matrix of the size corresponding to the total number of
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YA y A
2
3
0 » ¢
X
I I >
3 PERIR x
b a
(a) (b)

Figure 9.3.2 Integration over the triangular element using cartesian coordinates. (a) Integration with
origin at centroid; (b) Integration with x-axis along one side of triangle.

nodes. An explicit inversion of a large size matrix in terms of nodal coordinate values
is difficult, but such complications are avoided if natural coordinates are used.

With the interpolation functions constructed for various degrees of approximations,
one generally encounters integration over the spatial domain of the form

f/ f(<1>(ff}))dxdy=f[ flx, y)dxdy

If the functions f(x, y) are of higher order, the explicit integration becomes extremely
cumbersome. Let us consider an integral

Py = ff x"y'dxdy

The limits of this integral must be calculated from the slope of each side of the triangle
oriented from the reference cartesian coordinates. The final form of the integral consists
of the sum of the integrals performed along all three sides of the triangle. With the
origin of the cartesian coordinates at the centroid (Figure 9.3.2a), the following results
are obtained:

n=r+s

n=1 P,S:/[xdxdyszydxdyz()
A

n=2  Py= ¥y +5)

(9.3.5)

A F.,.5 3 r 5
n=3 Py= %(xm + X5y + X3 ¥3)

A |
n=4 B, = @(X{yi + x5 y5 + X5 ¥5)
2A

n=>5 Py = Eg(x{)’f + x5y +X3)3)

Triangular Element with Origin on One Side
Integration formulas for r + s > 5 are difficult to obtain for the triangular element
with the origin at the centroid. An easier, more compact integration formula can be
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derived from a triangle with the origin on the side between nodes 1 and 2 designated
as the x-axis with the y-axis passing through node 3 as shown in Figure 9.3.2b. In this
triangle, we obtain the integration formula as follows:

fle-y)
f/xysdxdy f/ x'y'dxdy
(c=y)

1 [—'(c—v) §
— - r+13c s S
—fo T e Yy

1 ar+1 _ (“b)r+1 ¢ S
fo (c—y)y*y'dy

= r 4+ 1 crtl
ris! . r+1] s

The triangular element characterized by (9.3.6) is effective in the solution of fourth
order differential equations [Cowper, et al., 1969].

Example 9.3.1 Local Element Stiffness Matrix

Given: Consider the local element stiffness matrix which arises from the two-
dimensional Laplace equation V21 = 0 in the form

(€) aple) (e} o ple)
0D, 0D,/ D, 0D,
(e) f/ ( + ) dxdy
dy dy

Required: Determine the explicit form of the above expression in a linear triangular
element using the interpolation functions given by (9.3.4).

Solution: Using the formula given by (9.3.3), we obtain

30 gl) - 3 9l
ax  ax oM dy dy

Since the area of the triangle is given by

f dxdy = A

the local element stiffness matrix becomes
b + biby+cica bbby +cics

= CNCMm

Kg;z)w = A(bnby + cney) = A| baby + cac b% + c% bybs + a3
bsbi +c3c1 Bsba+c3c2 b+

where by and ¢ are explicitly shown by (9.3.4b) and (9.3.4c). respectively. The cartesian
coordinate triangular element is simple to use as long as the interpolation function is
linear. It is cumbersome for nonlinear interpolation functions with n =r 45 > 5 in
(9.3.5). Notice that the element characterized by the integration formula (9.3.6) is free
from this restriction.
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Y A
P X
!
Ll=1 L1=0
L2=0 L3=0 5 L2=1
L3=0 L3=0

» X

Figure9.3.3 Natural coordinate triangular element (linear variation).

Natural Coordinate Triangular Element

Consider a triangle with the natural coordinates Ly whose values are zero along
the sides and unity on the vertices with a linear variation in between, as shown in
Figure 9.3.3. These coordinates are defined as

Here Ly = A /A, [, = A /A and [3 = A3/ Awith Ay, A, and As being the areas ob-
tained by connecting the three vertices from any point within the triangle such that the
total area Ais

A=A+AH+ A (937)
1= Ll + I+ L5 (938)

with A; = area (P23), A; = area (P31), and Az = area (P12). It is now possible to es-
tablish a relationship between the cartesian coordinates x and the natural coordinates
Ly in the form

x=Lix;+ Lyxo + Lsxz (9393)
y=">Liyi+ Ly+ Ly (9.3.9b)

Writing (9.3.8) and (9.3.9) in matrix form, we obtain

1 1 1 1 Ly
X = X1 X2 X3 L/Z (9.3.10)
y yi Y2 W3 Ly

We note that the 3 x 3 matrix on the right-hand side of (9.3.10) is the transpose of the
matrix appearing on the right-hand side of (9.3.3). Solving for the natural coordinates,
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we obtain the interesting result
L=0o" L=0Y L=0o0rLy=02oY (9.3.11)

with &% identical to (9.3.4).
The natural coordinates as used here for the triangular element are often called the
area coordinates or triangular coordinates. Any variable # may now be written as

u(e) = LNMSS)

It is possible to write (9.3.9a) in the form

x=ml +al; +a3ls (9.3.12)
Writing for each node, we obtain

X1 = o, X2 = 0, X3 = Q3

Substituting these into (9.3.12) yields the same expression as (9.3.9a).

Advantages of the natural coordinates can be demonstrated for higher order ele-
ments. Notice that, if cartesian coordinates are used for quadratic elements, we require
an inversion of the 6 x 6 matrix corresponding to the three corner nodes plus three side
nodes. This difficulty can be avoided in the natural coordinate system. For example, for
quadratic approximations, we may write

x=oli+ols +ozglg+agli Lo+ aslyls +oaglsly (9.3.13)

Referring to Figure 9.3.4 with three additional nodes installed at midsides of the
triangle, we may write (9.3.13) at each corner and midside node,

X1 = 0 X2=0i2 X3:()L3
+1 1 1 1 1 1 1 +1
= — — — Xs = — — — = — — —
X4 2(11 202 + 4(14 5 2(12 + 20L3 + 4(15 X6 2(11 + zas 40%

Solving for the constants and substituting them into (9.3.13) yields

x=0¥x, (r=1,2,...,6) (9.3.14)

r

Figure 9.3.4 Natural coordinate triangular ele-
ment (quadratic variation).

(1,0,0)
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o =L -l o =L -1L, o = QL 1)L (93.15)
o) =an1, o =4LL, P =4lsL,

Similarly, we write
y =2y,
and consequently, for any variable u

ul® = (I)ge)uﬁé’)

Using the index notations for a cubic variation, we may proceed similarly as follows
(see Figure 9.3.5):

x=anLy+byuLyLy + CNMQLNLMLQ (9.3.16)
with N, M, O =1,2,3and byy = 0for N= Mand cyug =0for N= M = Q. Writing
(9.3.16) for the three corner nodes, six side nodes (equally spaced), and the interior
node, we evaluate the ten constants. Returning to (9.3.16) with these constants, we can
now write

x=00x, (r=1,2,...,10) (9.3.17)

Here, for corner nodes:

o 1
Py = SGLy —DEBLy -2)Ly (N=1,23)

2(0,0,1)

Figure 9.3.5 Natural coordinate triangular
element (cubic variation).

9 /
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for side nodes:

9
o) = 2L 1,(3L, — 1)

2
0 9
¢Q:§AM@Q—U

9
¢?=§Q@@Q—U
for interior node:

o\ =271, 1,15

o 9
¢Q=§Qg@@—n

9
¢§%=§LGLK3L3—1)

y 9
¢g%=§Lﬂ4@Ll—1)

(9.3.18)

It has been shown that the determination of the interpolation functions for the
natural coordinate triangular element can be accomplished quite easily by noting the
special geometrical features that make it possible to avoid the inversion.

An additional feature, which should be noted, is the fact that the Lagrange inter-
polation formula can be used to generalize the procedure. Consider the higher or-
der elements as depicted in Figure 9.3.6. The Lagrange interpolation formula may be

LY =1

( 1o _
L =

(m _
L, =

| — W~ =

1o _
Ly =

(d)

Figure 9.3.6 High order natural coordinate elements, (a) Quadratic
(m = 2); (b) cubic (m = 3); (¢) quartric (m = 4); (d) quintic (m=73).
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transformed to natural coordinates by

s=d

1
H;(mLN—S+1) ford > 1

(r) —_
B (Ly) = o (9.3.19)
1 ford =0
with d = mLSC,). Here m denotes the degree of approximations and LEQ) (N=1,2,3,
r =1,2,...,n, n = total number of nodes) represents the values of area coordinates at
each node. The interpolation functions are given by
o) = BT(L1) B (L2) B (L) (9.3.20)

To determine &', we write (for m = 2)

o\ = BO(L) BV (L) B( L)

1
B (L)=02L -1+ )5@L -2+ 1)

BY(1;)=1
BV(L3)=1
Thus,

o) = L,2L - 1)

The interpolation functions corresponding to other nodes may be obtained similarly,and
we note that the results are identical to those derived from the polynomial expansions.

The finite element application of the triangular natural coordinates involves inte-
gration of a typical form

= f F(Ly, Lo, L3)dA (9.321)
A
Referring to Figure 9.3.7, the differential area dA is given by
(dh)(dH) _ (hdls)(HdLy)

dA= , .
sin a sin o

=2AdLdL,

The limits of integration for [.; and L, areOto 1 and Oto 1 — L, respectively. Thus,

1 1- 1,
1=24 f f f(L, Ly, L3)dLidL, (9.3.22)
0 0

where the function f may occur in the form
f(ly, L, 13) = 171518 (9.3.23)
with m, n, p being the arbitrary powers. In view of (9.3.22) and (9.3.23), we have
1 pl-Ly
I= ZA/ f LM LEdLidL,
0 Jo
or

1
1=2A f JIMdLy (9.3.24)
0
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L2 +a’L2

Figure 9.3.7 Geometry for area coordinate integration.

where

1-1 1-1,

J= L210dL, = L1 = Ly — 1,)PdL, (9.3.25)

0 0

Integrating (9.3.25) by parts gives

IQIH-I 1-L; [1~L1 pL;+1 .
J = 1-L, - p 1—- 1L — P=id
[n n 1( 1 — Lp) . + ; o ( 1 — L) dL,

p b 1 1
= L' (1= L, — L, ldr,
n+]f0 5 ( 1 — L) 2
p(p-1) b

LyP(1— L — Ly)’~dL,

CERCEDY,

or
pla! flL' ntp pinl(1 — Ly)yrtrtl
= dly = 9.3.26
(n+p)Jo Lol (n+p+1)! ( )
Substituting (9.3.26) into (9.3.24) and integrating by parts again, we obtain
2Am! pln!
= P (9.3.27)
(n+m+ p+2)!

For example, if m =2, n = 0, and p = 3, we obtain

2A2HONEY A
fALmd"dy T (2104342 210

Itis clear that the advantage of this element is that higher order elements are gener-
ated easily and a simple integration formula is available without limitation to the order
of polynomial degrees.
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9.3.2 RECTANGULAR ELEMENTS

If the entire domain of study is rectangular, it is more efficient to use rectangular el-
ements rather than triangular elements. Consider a domain with a rectangular mesh.
The mesh can also be generated using triangular elements with sides forming diago-
nals passed through cach rectangle. This, of course, results in twice as many elements.
That such a system of refined meshes with triangles does not necessarily provide more
accurate results is well known. A simple explanation is that the additional node in
the rectangular element leads to additional degrees of freedom or constants that may
be specified at all nodes of an element, which contributes to more precise or adequate
representation of a variable across the clement than in the triangular element having
an area equal to the rectangular element.

Cartesian Coordinate Elements
To construct interpolation functions for arectangular element, one might be tempted
to use a polynomial expansion in terms of the standard cartesian coordinates.

1 = +oox + o3y +oagxy+... (9.3.28)

The necessary terms of polynomials corresponding to the side and interior nodes, as
well as the corner nodes as related to the degrees of approximations of a variable, must
be chosen wisely. Polynomials are often incomplete for the desired inclusion of side and
interior nodes. Furthermore, the inverses of coefficient matrices may not exist in some
cases. The natural coordinates, on the other hand, usually provide an efficient means
of obtaining acceptable forms of the interpolation functions. Lagrange and Hermite
polynomials, as discussed in the one-dimensional case, are also frequently used for the
rectangular elements. A special element popularly known as an isoparametric clement
is perhaps the most widely adopted. Among the many desirable features of the isopara-
metric element is the fact that it may be used not only for the rectangular geometry but
also for irregular quadrilateral geometries.

Lagrange and Hermite Elements

The advantage of using Lagrange or Hermite elements for a rectangular element is
that desired interpolation functions are constructed simply by a tensor product of the
one-dimensional counterparts for the x and y directions, respectively.

Consider the Lagrange interpolations in two dimensions, as shown in Figure 9.3.8.
For a linear variation of u (Figure 9.3.8a), we write

u® = ol (N=1,2.3,4) (9.3.29)
with
SO = L[ ¥ [0LY o =[P and o) = L71%
where
B0 —ta-o,  f=la+e.  L=301-w.
1§ = S(1 +), _ ,q:%X
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y
.

4 3 7 8 9
b » S ®4 ®5 68 gt
1 2 1 2 3
P x [ 3
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a (b)
(a)
1
=
.
SN
———

Figure 9.3.8 Lagrange interpolation functions: (a) linear, (b) quadratic,
(c) cubic (variations of functions along the line through A).

Interpolations of quadratic and cubic variations can be constructed in the same way

(see Figure 9.3.8 b,c).

The Hermite polynomials may be applied similarly to the rectangular element as
the Lagrange polynomials. For bicubic Hermite polynomials, we have (Figure 9.3.9):

U =00, (r=1,2...16)
with
= Hy Hy, o =Hj H,
(D(E) l(x) HIO cb(e) 2(x) HP(V) ‘DEE()))
oF = Hi Hi, o =W H, )=
o = Hi Hi, & =H H, o=
. .|
Q) =u” 71
Q, = (a”/aé)fe)
Q, = (du/In);”
o Le= (@°ufoon);” ,
G Q)

Figure 9.3.9 Hermite bicubic rectangular element.

(9.3.30a)

() _ 40
CD - HI((X)FIZO (»)

€) _ 10
ey = H((X)Hlo(y)

(e
Hi Hy,y @y = Hy Hy

1 (e)
l(x)I{Z CDH - H;(X)I-IZ(\,
(e) _ 1
= Hj,Hy,, P =, H,

(9.3.30b)
O, =u)’

0y, = (dufd&)Y’
Qs = (du/on);’
Ql6 =(d u/aéan)(:)
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and

(E) Qs = M(;) Oy = ué” Qi = Mff)

@) Ju\© au\© u
( ) Os = (E)z O = (i)3 Ou = (E)
au\" au\ o\ ® o\
o-(3)  e=(R),  e=(R), e-(5),

a (e) 82u (e) a u (e) 82u (e)
(8 ) QSZ(‘ - ) Q12=( ) Q16=(‘ - )
ot oIt |, 3maE ), oIt ),

||
m|

(9.3.30c)
Hiy=1-3+26°  Hj,=1-37"+2v
Hy,, =3g° - 263 Hy, = 3 - 20
, 1 ., (9.3.30d)
1(x)—§ 26% +¢° Hy,y=m=20"+m
Hy,y =€ -¢ Hy,y = =

Note that, because of the combinations of the Hermite polynomials for both x and y
directions, the mixed second derivatives must be included as nodal generalized
coordinates. Higher order Hermite polynomials may be constructed similarly using
(9.2.14).
A similar approach can be used to generate three-dimensional elements CD( )=

(X) Lzy 'L{?, etc. for Lagrange elements and similarly for Hermite elements. However
it should be noted that for nonorthogonal elements (arbitrary quadrilateral and hexa-
hedral), appropriate coordinate transformation (geometrical Jacobian) will be required
as discussed in the following section.

9.3.3 QUADRILATERAL ISOPARAMETRIC ELEMENTS

The isoparametric element was first studied by Zienkiewicz and his associates [see
Zienkiewicz, 1971]. The name “isoparametric” derives from the fact that the “same”
parametric function which describes the geometry may be used for interpolating
spatial variations of a variable within an element. The isoparametric element utilizes
a nondimensionalized coordinate and therefore is one of the natural coordinate
elements.

Consider an arbitrarily shaped quadrilateral element as shown in Figure 9.3.10. The
isoparametric coordinates (£. n) whose values range from 0 to & 1 are established at the
centroid of the element. The reference cartesian coordinates (x, y) are related to

x, ¥y = + o€ +azm+ as€m (9.3.31)

for the two-dimensional linear element in Figure 9.3.10. A linear variation of a variable
1 may also be written as

0 = oy + 0 + oan + o€ (9.3.32)
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Figure 9.3.10 Quadrilateral isoparametric
element (linear variation).

-1, 1

(1D
(-1, -1)

(1,-1)

Writing (9.3.31) in terms of nodal values yields

= ar 4 ax(—1) + aa(—1) + ag(=1)(=1)

x> = ay + (1) + a3(=1) + eu(1)(—1)
x3 = a1 + az(1) + as(1) + au(1)(1)
xp =g+ oo(—1) + a3(1) + ag(—1)(1)

(9.3.33a)

In a matrix form, we may rewrite (9.3.33a) as

[x] = [C][«]
Here the coefficient matrix [C] is given by
1 -1 -1 1
1 1 -1 -1

11 1 1
1 -1 1 -1

(€] =

Thus,
[a] = [C]™'[]

with
1
11-1 1
41-1 -1
1 -1

1
-1
1
-1

— ek

Substituting (9.3.34) into (9.3.31) yields

X = CDS'S)XM'

(9.3.33b)

(9.3.34)

(9.3.35)

Here CI>§S) is called the isoparametric function and has the form

1

o) = Z(l +Em& (L + Enmé)

(9.3.36)
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Substituting the nodal values of £y; and &yp into (9.3.36) gives, with & =&, & =,
(e) _ 1
o) = 3(1- &)1 -

|
of) = (1 +6)(1 —m)
(9.3.37)

o 1
o) = 21+ 61+

e 1
o= (1-6)(1+m)

It is interesting to note that the interpolation functions derived in (9.3.37) can be ob-
tained by tensor products of the Lagrange polynomials with the origin at the centroid
from (9.2.5) for the case in Figure (9.3.8a).

The quadratic element requires midside nodes as shown in Figure 9.3.11. Thus, we
may approximate x or y in the form (see Figure 9.1.6)

X,y = a1+ af + oam + oun + ask? + agn’ + ok’ + asE’ (9.3.38)

A similar procedure as in the linear element may be used to determine [C] and
[C]!, and we obtain
at corner nodes:

ol (&) = %(1 + EnED(L + EmE)(EmE +EmE - 1) (9.3.39)

at midside nodes:

1
‘DSS)(EJ) = 5(1 —ED)(1 + Eppk) forén =0
(9.3.40)

1
O(E) = 5(1+Emb)(L— &) forbr =0

(_1! 1)

-1,0)

(0,-1)
(a) (b)

Figure 9.3.11 Quadrilateral isoparametric element (quadratic variation):
(a) straight edges, (b) curved edges.
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(b)

Figure 9.3.12 Quadrilateral isoparametric element (cubic variation): (a) straight edges;
{b) curved edges.

|

For a cubic element as shown in Figure 9.3.12, we have (see Figure 9.1.6)

Xy = a1+ af + aan + e+ ast 4 o’ + arE’n + agEn’ + aof’
+ oo + o€+ apéry’ (9.3.41)

where we notice that the x?y?(£%v? here) term is omitted from the complete cubic
expansion (Figure 9.1.6) in order to match the number of nodes chosen here (12 terms
instead of 13 terms)

at corner nodes:

o\)(&) = —(1 +EniE)(1 + Enaba)[9(E7 + £) — 10] (9.3.42a)

at side nodes:

<I><"’)(§,)——-(1+emg1)(1—§2)(1+9emg2) for &y = +1 and £y = +1
(9.3.42b)

(&) = —(1 +EnaE2)(1 — £7)(1 +9En1E1) for gy = £l and Ex =

It should be remarked that for higher order isoparametric elements, Lagrange polyno-
mials can still be used without interior nodes but with side constraints imposed.

Inengineering applications, we are concerned with a derivative and the integration of
quantity associated with a variable with respect to the cartesian reference coordinates.
Since the variable is represented in terms of the nondimensionalized isoparametric
coordinates, we require a transformation between the two coordinate systems. Consider
a quantity given by

f f -8% F(E, m)dxdy (9.3.43)
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with £ = £, n = &, x = x1, and y = x. From the chain rule of calculus, we write

af _9fox  3fdy
dE  BxdE 0y

(9.3.44)
af adfox afdy
im " axam ' oyom
or in a matrix form
af dx dy of
af ~ | ox ay af
i am amd Lay
Thus,
of af
9x | 9§
af =[J] of (9.3.45)
3y i
where J is called the Jacobian given by
dx dy
9&  9E
1= .. 5y (9.3.46)
am  om

Here the derivatives df/dx or 3f/dy are determined from the inverse of the Jacobian
and the derivatives 3 f/9£ and 3 f/9m. The integration over the domain referenced to the
cartesian coordinates must be changed to the domain now referenced to the isopara-
metric coordinates

/ f dxdy = f_ 11 [ 11|J|d§d~q (9.3.47)

To prove (9.3.47), we consider the two coordinate systems shown in Figure 9.3.13.
The directions of the cartesian coordinates and the arbitrary nonorthogonal (possibly
curvilinear) isoparametric coordinates are given by the unit vectors iy, i, and the tangent
vectors g, g, respectively, related by

ax . 8yi

= —1 —_—
g1 It 1+ JE 2
ax, ay.

— 7 vr
g 8n1+8nlz

The differential area (shaded) is

i i i3
poay

dx iy x dyiy = dxdyi; = gid§ x g2dn= |3 ¢ d€dn
ad )
oAy
am  an
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Figure 9.3.13 Coordinate transformation.

-
Y

or
dxdy iz = |J|d&dnis
with
dx dy
o0&  0E
Tl =1, )
ox oy
am  on
Thus, we obtain the relations

dxdy — |J|dédn (9.3.48)

f/ d)‘dy*f f ( ““+7129£)|f|d%dn ffgx(én)dédn
ff"fdxdy—f f (21*“+122—f)lf!d%dﬂ ffgy(en)dgdn

where J1, J12, J21, and J»; are the components of the inverted Jacobian matrix (9.3.46).
The integration (9.3.49) may be performed most efficiently by means of the Gaussian
quadrature [see Hildebrand, 1956]. For a one-dimensional case, we may write

(9.3.49)

(9.3.50)

1 n
| ree =Y, fe)
- =
or, when extended to a tensor product in two dimensions, we write
I 1 n n
[ [ 1€ mdean=3" 3 wufem

=1 k=1

where w; and wy are the weight coefficients, and f(£&) and f(£;, 1) denote the abscis-
sae representing the values of the functions f(£) and f(&, n) corresponding to the »
Gaussian points. The weight coefficients and abscissae for the first ten Gaussian points
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Table 9.3.1 Abscissae and Weight Coefficients
of the Gaussian Quadrature Formula

Weight Coefficient Abscissae
N Wk + gk., + T
2 1.00000 00000 0.57735 02691
3 0.55555 55555 0.77459 66692
0.88888 88888 0.00000 00000
4 0.34785 48451 0.86113 63115
0.65214 51548 0.33998 10435
5 0.23692 68850 0.90617 98459
0.47862 86704 0.53846 93101
0.56888 88888 0.00000 00000
6 0.17132 44923 0.93246 95142
0.36076 15730 0.66120 93864
0.46791 39345 0.23861 91860
7 0.12948 49661 0.94910 79123
0.27970 53914 0.74153 11855
0.38183 00505 0.40584 51513
0.41795 91836 0.00000 00000
8 0.10122 85362 0.96028 98564
0.22238 10344 0.79666 64774
0.31370 66458 0.52553 24099
0.36268 37833 0.18343 46424
9 0.08127 43883 0.96816 02395
0.18064 81606 0.83603 11073
0.26061 06964 0.61336 14327
0.31234 70770 0.32425 34234
0.33023 93550 0.00000 00000
10 0.06667 13443 0.97390 65285
0.14945 13491 0.86506 33666
0.21908 63625 0.67940 95682
0.26926 67193 0.43339 53941
0.29552 42247 0.14887 43389

are shown in Table 9.3.1. In general, accuracy of integration increases with an increase
of Gaussian points, but it can be shown that only a very few Gaussian points may
lead to an acceptable accuracy. The basic idea of Gaussian quadrature is shown in
Appendix B.

The Gaussian quadrature numerical integration may be easily extended to the three-
dimensional element. Extension of the Gaussian quadrature integration to the triangu-
lar or tetrahedral elements are also possible with some modification of the procedure.

Example 9.3.2 Stiffness Matrix of an Isoparametric Element

Given:

<© acb(” CD(e) 20\ a0l
Kym = + — dxdy
dy dy
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y A

@
(7.2

b

Figure E9.3.2 Geometry for Example 9.3.2.

Required: Work out the detailed algebra necessary for computer integration
using the Gaussian quadrature. Compute the integral with 3, 4, 5 Gaussian points
(Figure E9.3.2).

Solution:
(@) ox(e) () o (e
ady ad,, ady 0d,
ff( Moy — )dxdy
dy 9y
(©) 44 (€) o (e
0N dCD ady dd;,
J|dEd
ff( +8y dy)||§"ﬂ
1 a1
=[ flkNM(E,n)dédn
—1J=
=3 wjwekyu(€;, )
i=1 k=1
where
. dcb(e) . aq)(") . 8(1)(5’) . acb(e)
ke ) = | (7 +7 J M T M
vm(E, M) |:( Llaer: 12— P Lh: +J12 o
o g8 oz () a4l o gy (€)
. To) — 0P — 3P — 3
J N oy T—E T M T M AT
+(218§+228n)(2]8§+228"q [J]
with
— 1 ay - 1 9y — 1 ax - 1 ox
1=—=7 12=—"= nN=——7, N =
PARN PRI |/} om |/} 0&
| dx dy dyodx
o€ om  0& om
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with
o} —(1 + EmED (L + Enad)
_gqle)y 1 ) b- ) )
=q,\xy = Z(at + bi&) + il + digi&)
ai =Xy + X0 + X3+ Xai, b= —x 0 + a6 — Xy
Ci=—Xy — X + X3 T X4, di =X — X+ X3 — Xy
o 3.(8) (e)
2o a0 1
Awi + B, ) i k=12
with
Ay =x27 — xq2, Bl =xp — x3, Bl =x3 — xn
Aoy =x32 — X12, B}, =x3 — xa, By =x12 — xp
Az =Xy — x22, Bl =x12 — x1, B} =xp —xp»
An = x12 — x32, Bl =xxn — x12, Bl =x — xn
Az = x4 — X1, B}, =x31 — x41, B}, =x21 = x31
A =x1 — x31, B, = xq1 — x31, B, =xn — X1y
Azp = X1 — X41, Bl =x31 — xyy, Bl =x1; — X
Ap =x31 — X131, Bl =x11 — x21, Bl =x3 — X2
8)61 8)62 d)CZ dx1 1
|J| ———————i—OL()-f-Ongl-f-Otzgz)
0g; 9& 3§ 9% 8(
ag = (X41 — X2 0(X12 — X32) — (X151 — X31)(X42 — X22)
oy = (31 — X4 )(x12 — X22) — (X110 — X21)(X32 — X42)
o = (x4 — X1 )(X22 — x32) — (X2 — X3 )(Xg2 — X12)
where '
X22 — X42 = Y2 — Ya, X1 — X313 = X| — X3, etcC.
'Y 1 ol 1
An1 + B Chi1., N — —(Aw+ B8)=C
5x, 8|J|( N+ Bii&) = Cw %2 87| (Anz N k) N2
If we chose n = 3, then from Table 9.3.1 we have

wy = 0.55555555, wy = (.88888888, w3 = 0.55555555
(&, m) = —0.77459666, (&, m) = 0.0, (&, m3) = 0.77459666
We are now prepared to calculate

K= 303w k)

i=1 j=1
where

knm(&.m;) = (CniCut + C2Can)IJ |
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Thus,
0.5449 —0.2773 —0.1035 -0.1640
o —0.2773 0.8771  0.1380 —0.7377
NM T 01035 0.1380 0.6378 —0.6723
—0.1640 —0.7377 —0.6723  1.5740
Similarly,
forn =4
0.5457 —0.2776 —0.1026 —0.1655
KO —0.2776  0.8771  0.1377 —0.7372
NM ™ 01026  0.1377  0.6390 —0.6741
—0.1655 —0.7372 —0.6741 15768
forn:S
0.5457 -0.2776 —0.1025 —0.1656
© —0.2776  0.8771  0.1376 —0.7372
KNM:

—0.1025 01376  0.6391 —-0.6742
—0.1656 -0.7372 -0.6742  1.5770

We notice that an asymptotic convergence is evident as the Gaussian integration point
n increases from 3 to 5.

Example 9.3.3 Transition from Linear to Quadratic Element

Figure E9.3.3 presents irregular elements with transition from a linear element to a
quadratic element. In this case, side (1-5-2) is quadratic for the element (e = 1). Element 2
is fully quadratic, whereas element 1 is partially linear and partially quadratic. Interpo-
lation functions for element 1 can be derived by constructing tensor products as follows:

o = L) (m) = L& ~ 11—
o = L2(E) 1 (n) = 1€ + 11— )
o) = 10 1 ) = L1+ E)(1 +m)

o = 1)1 () = (-8 +n)

o = L)1 (m) = 51— E)(1 — )

where the superscripts (1) and (2) for Lagrange polynomials denote linear and quadratic
functions, respectively.

Example 9.3.4 Irregular Elements with an Irregular Node

Consider the irregular elements that may occur in the process of refinements as seen
in Figure E9.3.4. All elements are to be approximated linearly. Interpolation functions
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Partially linear and
partially quadratic

Fully quadratic

ie} (e}
&, (D;
()
D (e)
4 <D5"

Figure E9.3.3 Five-node quadrilateral element, transition from linear to
quadratic element.

are as follows:

HURES (R

o) =1 ¢ n=-1, —1<£<0
0 n=-1, 0=<§=<
;A+8)(1-m m>-1

o = ¢ n=-1, 0<i=<l
0 =-1, —-1<§&£<0

e 1
of) = Z(1+H) (L +m)

o 1
o = ;-1 +w
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oy of

(
¢4€) (bge)

Figure E9.3.4 Irregular elements with irregular node which may occur in
the refinement process, all elements are linear.

=61 £>0
o =

1
:2‘(1"'5)(1—"1) £<0
Here Cbge) for the midside node (hanging node) may be eliminated by readjusting the

corner node functions, as is usually the case in adaptive mesh refinement methods (see
Chapter 19).

Example 9.3.5 Collapse of Quadrilateral to Triangle

A quadrilateral element may be collapsed into a triangle by combining two of the
quadrilateral nodes into one (Figure E9.3.5), as follows:
1 = o4l 4 o) 4 SO 4 Bl

Equating u( ) = ug ¢) we have for the triangle

() cb(") ()+(Dg?)ug)_+_(¢(3)+q)(e) (e) CD(e) (€)+¢2) (e)+(bg) F‘

297
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4

17
Ht
///

Y

[ ]]]
A1

Figure E9.3.5 Collapsing a quadrilateral element into a triangle. Gaussian
quadrature integration can be performed on the triangle as modified from the
quadrilateral.

in which the modified interpolation for node 3 of the triangle is given by

—le € e 1 1
oy = o + 0 = Z(1+ (A +m) + (L= O +m)

Thus

—(e) 1
o) = 5(1 +m)

Gaussian quadrature integration may be used for this triangle in accordance with
Table 9.3.1 with appropriate abscissae values.

9.4 THREE-DIMENSIONAL ELEMENTS

Three-dimensional elements are required when one- or two-dimensional idealization
is not possible. Basic ingredients for three-dimensional elements have already been
presented in earlier sections and no special conceptual developments are required. The
three-dimensional elements may be constructed quite easily by direct extension of the
ideas used for two-dimensional elements.

9.4.1 TETRAHEDRAL ELEMENTS

Consider the tetrahedral elements as shown in Figure 9.4.1. For linear variation of a
variable (Figure 9.4.1a), we write

W) = ag 4+ ayx + Y + 032 (9.4.1)

It is a simple matter to write the above equation at each node, which yields a total of
four equations. Evaluating the constants from these equations, we obtain

u® = oY (N=1,2.3,4) (94.2)
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Figure 8.41 Tetrahedral element (cartesian coordinate): (a) linear variation,

2

(0

(b) quadratic variation, (¢) cubic variation.

where
O = ay + byx +cny + dyz (9.4.3)
For N =1, the coefficients ay, by, c1, d; are of the form
X2 ¥ 2|y 1 v 2 .
a = |x3 3 3| —, by=—-11 3 z|—
D) ¥ By
X4 V4 Z4 1 yva z4
1 x» 2 : 1 x» » 1
_ L _ 9.4.4
ci BB | By D (9.4.4)
T x4 I x4
I xpn x2 xp3 Iy oy oz
1 X x» x I x2 »
D| = o Xn Xa3| Yy — 6V (9.4.5)
I x31 xp x3 1 x5 » zs
1T xy X xg I xy oy oz

where V is the volume of the tetrahedron. The rest of the coefficients can be determined
similarly.
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1Q

(1,0,0,0)

O
2 (0,1,0,0)
(a)

Figure 9.4.2 Tetrahedral element (natural volume, or tetrahedral coordinates):
(a) linear variation; (b) quadratic variation; (¢) cubic variation.

For higher order approximations, the coefficient matrix becomes very large in size
and a resort to natural coordinates is inevitable. The most suitable choice is the volume
coordinate system extended from the area coordinates for a two-dimensional triangular
element.

If the three-dimensional natural coordinates (tetrahedral or volume coordinates)
are used, a node having the coordinate of one decreases to zero as it moves to the
opposite triangular surface formed by the rest of the nodes (Figure 9.4.2). For the linear
element (Figure 9.4.2a), the interpolation functions are

o =Ly (N=1,23,4) (9.4.6)
For higher order interpolations (Figure 9.4.2b,c), we invoke a formula similar to (9.3.20),
©) = B(Ly)B"(12) B (Ls) BV (La) (9.4.7)
where B")(Ly) is given by (9.3.19). This provides the following results:
For quadratic variation (Figure 9.4.2b):

at corner nodes:

o' = (2Ly — 1)Ly
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at midside nodes:
o =4l @) =4L;L,, etc.

For cubic variation (Figure 9.4.2¢):
at corner nodes:

. 1
) = 5BLy ~ DBLy - 2)Ly
at side nodes;
() _ @ _ 9
N ——L2L3(3L3 - 1), &y = §L3L4(3L3 — 1), etc.
at midside nodes;
o\ =271, Ls, @ =271,151,, etc.

The spatial integration of the tetrahedral coordinates may be derived similarly as in
the triangular coordinates. This results in

v
or
_ 6Vm!n!plq!
C(m4n+p+q+3)

We may use a hexahedral element to generate five tetrahedral elements as shown in
Figure 9.4.3. This approach is desirable in some applications where both hexahedral

' K\

B~
V A

Figure 9.4.3 Five tetrahedral elements subdivided from a hexahedral element.

(9.4.8)
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and tetrahedral elements are used. It is also convenient for the structured automatic
grid generation.

9.42 TRIANGULAR PRISM ELEMENTS

It is possible to extend the tetrahedral element into triangular prism elements as shown
in Figure 9.4.4. Note that triangular shapes may be completely arbitrary with the curvilin-
ear coordinates £, m, { being distorted. Interpolation functions for linear and quadratic
approximations are given as follows:

Linear (6 nodes)

5 L1 . 1 a Li(1
(pg ) — 1_(+_’ﬂ), q>§ ) ﬁ(_-i—_"ﬂ), q)g ) — _3(_+_"ﬂ) (9.4.9a,b.c)
2 2 - 2
o Ll - . 1- o L1 -
q)g) _ L_l) q;(s) _ M q)g) _ L1 -m) (9.4.9d.e.f)
2 : 2 2
Quadratic (15 nodes)
Corner nodes
o 1
o)) = S LiQ2L —1ym(n+1)
o 1
o)) = 5 Lo(2L, — Dn(n+1)
a0 1
oY = 5 L1 = n(n+1) (9.4.10a,b,c)
o - LieoL — D — 1
i =5 1(2L; = Dm(m—1)
o 1
of) = 51221z = Tmin— 1)
a0 1
ol = 5 L3@Ls — nin = 1) (9.4.10d,e.f)

3
L(-1,1 1))
6
L3(-1,—1,0)
g s Ly(l-1,-1)
(a) (b)

Figure 9.4.4 Triangular prism elements: (a) linear (6 nodes). (b) quadratic (15 nodes).
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Midsides of Triangle
o =2LiLn(n+1), o\ =2LLm(n+1), &7 =2L Lmn+1) (9.4.11abc)

O =2LiLm(n—1), ) =2LLm(n—1), &Y=2LLmn—1) (94.11def)

Midsides of Quadrilateral
o = Li(1—v), o =L(1-w), o =11-v) (9.4.12a,b,c)

9.43 HEXAHEDRAL ISOPARAMETRIC ELEMENTS

The four-sided two-dimensijonal elements may be extended to three-dimensional el-
ements (Figure 9.4.5). The rectangular and arbitrary quadrilateral elements are de-
veloped into a regular hexahedron (brick) and irregular hexahedron. For a regular
hexahedron, we may use either the Lagrange or Hermite element, but this becomes
cumbersome as higher order approximations must include interior and surface nodes
as well as corner and side nodes. Besides, neither may be applicable for irregular hex-
ahedrons. An element which is free from these disadvantages is the isoparametric
element.

In the isoparametric element for a linear variation of the geometry and variable, we
write (see Figure 9.4.5a)

x, ¥, 2= o + o€ + agn+ oyl + asEnl + asEn+ ol + sl (9.4.13)

Using the same procedure as in the two-dimensional element, we obtain

e 1
oY = gL+ &)+ Exata) (1 + Enats) (9:4.14)
For a quadratic variation (Figure 9.4.4b), we have

X, ¥, 2= + mf +an+ ol + asénl + asEm+ aymi + g€l
+ agf? + agon + a1 L’ + @€ + azEn’ + oML + aysmi?
+apE L + ou7E L + eugEPMg + agof g + agoEmc? (9.4.15)

The interpolation functions are:
at corner nodes :

of) = —(1 +EMED( + Enbo)(1 + En&)(EnEr + EmE + EnsEa —2)  (9.4.16a)
at midside nodes :
oY = : (1 — £1)(1 + Enabo)(1 + Ensks) (9.4.16b)

for

Envt =0, Evm==+1, Evi==+1, etc.

303
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7 (L LD

(1, 1,-1)

(a)

Curved edges

Straight edges
(b)

Straight edges Curved edges
(©)

Figure 9.45 Hexahedral isoparametric element: (a) linear variation (8 nodes);
(b) quadratic variation (20 nodes); (¢) cubic variation (32 nodes).

Once again, Lagrange polynomials may be used to determine three-dimensional
interpolation functions without interior nodes, but with side node constraint conditions.
We now require integration of the form

/[f %f(g, M, {)dxdydz (9.4.17)

with€ =&, m=&, { =&, x = x1, y = x2, and 7 = x3. Proceeding similarly as in the
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two-dimensional case, we obtain

Uf %d"dydzz f_ll f_ll [jl (71% +712% +713%)md£dndé

1 p1 pl
-/ ] steonodganic (9.4.18)
-1J-1J4
where J 11, J 2, and J13 are the first row of the 3 x 3 inverted Jacobian matrix

_§f dy 9z 7
dE 0 08¢
dx dy 9z
U=+ — —
an dm dn
dx 9y 9z

L aL 3L aL

We may carry out differentiations of f with respect to y and z similarly, and write the
general form of integration as follows:

1 1 1 n n n .
f_l f_1 f_l g(&.m, Odbdndl = 3 3 " wiwjuwig(&. ;. L) (9.4.19)

i=l j=1 k=1

The weight coefficients w;, w;, wy, and the abscissae g(&, m;, {) are obtained from
Table 9.3.1 as a tensor product in three directions. A procedure similar to Example 9.3.1
may be followed for three dimensions to perform Gaussian quadrature integrations.

9.5 AXISYMMETRIC RING ELEMENTS

If the three-dimensional domain of study is axisymmetric, then any two-dimensional
element may be used with the spatial integral replaced by

[f f(x,y, 2)dxdydz = fOZﬁf f(r, Z)rdodrdz (9.5.1)

where dx = dr,dy = rd0, and dz = dz (see Figure 9.5.1). For quadrilateral isoparamet-
ric elements, we have

fozn f_li /;11 fE, mrdo|J|dedn = 2w fi j:ll FCE, Mr(E, )T |dEdn

or

1 1 n n
2w [ [ g midedn=2m )" > wjug(e o (9.52)

j=1 k=1

This represents a three-dimensional ring element generated by a two-dimensional
element.

Note that the applications arise in the flowfields of missiles and rockets at zero angle
of attack. For a nonzero angle of attack, the flowfields become asymmetric. In this case,
the axisymmetric ring element can no longer be used and three-dimensional elements
must be invoked instead. Another alternative is to keep the ring element and use Fourier
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Quadrilateral Triangular
or rectangular element
element

[

/

(a)

(b) (c)

Figure 9.5.1 Axisymmetric ring elements. (a) Discretized geometry of a
cylinder. (b) Triangular ring. (c) Quadrilateral ring.

series expansions around the circumference in order to accommodate nonaxisymmetric
flowfields at every few degrees apart. This may result in a process just as expensive as
three-dimensional elements.

9.6 LAGRANGE AND HERMITE FAMILIES AND CONVERGENCE CRITERIA

All finite elements, regardless of their geometrical shapes, may be grouped into two
categories: Lagrange and Hermite families. The Lagrange family consists of finite el-
ements in which the values of a variable are specified at nodes, whereas the Hermite
family includes derivatives of the variable as well as its values defined at nodes.

Both Lagrange and Hermite families may be represented by polynomials derived
from the Pascal triangle (Figure 9.1.4a) and Pascal tetrahedron (Figure 9.1.4b), or
from two-dimensional hypercube (Figure 9.1.4¢) and three-dimensional hypercube (Fig-
ure 9.1.4d).

In the Lagrange family, the polynomial terms contained in the circles represent the
corresponding number of nodes required. However, in general, interior nodes lead to
cumbersome bookkeeping and subsequent removal of some of the polynomial terms,
resulting in an incomplete polynomial.

For a Hermite family, the number of nodes and polynomial terms required increases
since derivatives in addition to the variable itself are to be specified. However, a rea-
sonable compromise can be met by eliminating the values of a variable and specifying
only the normal derivatives at side nodes. Let us consider twenty-one terms of a quintic
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u3,(ux)3=(uy)3

()5, (u )5, (i )y

(un )5

“:-(“x)n(”y)] 4 MQ’(MJ‘)P(M}')E
‘u,u)ly(uxy)l’(MYy)l < (MXX)Z’(MX\')Q’(MY)')Z
(un)4 V '
Y
n
Jdu du
U =—,u, =—,efc.
Yoax " om
» X

Rgure 9.6.1 Hermite triangle, 21 constants to be determined.

polynomial for a triangular element given by

U=oq
+ox + o3y
+aux® +asxy + 0‘6)’3
+arx® + agxzy + OLgxy2 + a10y3 (9.6.1)
+ 0L11x4 + a12x3y + a13x2y2 + a14xy3 + azsxy4
+ousX + ogrxty + ansx” Y7 4 oox’y + angxyt + any”
The nodal values of # and derivatives of u to be specified are shown in Figure 9.6.1.
Notice that we can write only eighteen equations with six equations at each node. We
require three more equations which are furnished by writing normal derivatives at
midsides. In this way, all twenty-one constants can be evaluated.

The 2mth order differential equations associated with many of the engineering prob-
lems are in the form

Viu=f (m=1) (9.6.2)
Viu=f (m=2) (9.6.3)

Thus, the weak derivatives that appear in the Galerkin finite element formulations have
m = 1for(9.6.2) andm = 2for (9.6.3). The choice of interpolation functions must ensure
the convergence of solutions of the given differential equations. Toward this end, the
following criteria should be satisfied.

(1) Smooth within the interior domain
(2) Continuity across ecach element
(3) Completeness

To satisfy (1), the degree of polynomial, p, should be p > mso that the integrand of the
finite element equation does not vanish (remaining at least a constant). For the stiffness
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integrands with derivatives of order m, we require C™ continuity within the domain (2)
and C"™ ! continuity across the boundary (I") in order to satisfy the convergence criteria
of (1) and (2), respectively.

Interpolation functions associated only with the variable(s) of the differential equa-
tion such as in Lagrange polynomials are known as the C° element, whereas those
with derivatives m are called the C™ elements. The Hermite polynomial interpolation
functions of (9.2.12a) are referred to as the C! element.

The elements that satisfy both criteria (1) and (2) are known as conforming (com-
patible) elements. If these criteria are not satisfied, they are called nonconforming
(incompatible) elements. Nonconforming elements, however, are useful in fourth order
differential equations in which normal derivatives along the boundaries of C' triangle
are specified.

The criterion (3) implies that complete polynomials asshown in Figures 9.1.4 through
9.1.6 be used, which cannot be met in many cases as the number of nodes to be provided
does not match the number of complete polynomials of a given degree. As long as the
symmetry of the polynomials is maintained, however, the convergence is, in general,
not affected.

9.7 SUMMARY

Although the standard textbooks on finite elements provide information presented in
this chapter, it was intended that a complete summary of finite element interpolation
functions serve as a counterpart of Chapter 3, Derivation of Finite Difference Equations,
as well as this text being self-contained and adequately balanced between FEM and
FDM.

Itis clear now that, instead of writing finite difference approximations using as many
nodal points as necessary for desired order accuracy in FDM, we achieve similar ob-
jectives in FEM through interpolation functions. Instead of Taylor series expansions or
Pade approximations used in finite difference equations, we resort to polynomial ex-
pansion in finite element interpolation functions. Although not covered in this chapter,
special functions such as Chebyshev polynomials, Legendre polynomials, or Laguerre
polynomials have been used in association with spectral elements. This subject will be
discussed in Section 14.1.
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CHAPTER TEN

Linear Problems

In this chapter, we discuss procedures for obtaining finite element equations and their so-
lutions in linear two-dimensional boundary value problems. Implementations of bound-
ary conditions are detailed and example problems for steady and unsteady cases are
presented. Multivariable simultaneous partial differential equations and simple Stokes
flow problems are also included.

10.1 STEADY-STATE PROBLEMS - STANDARD GALERKIN METHODS

10.1.1 TWO-DIMENSIONAL ELLIPTIC EQUATIONS

We have illustrated procedures for constructing finite element equations for one-
dimensional problems in Chapters 1 and 8. Extension to two-dimensional cases fol-
lows the same general guidelines. The only difference is the appropriate interpolation
functions for two-dimensional geometries, specification of Neumann boundary condi-
tions, integration over the domain, and directional variables.

Consider the second order elliptic partial differential equation of the form,

R=Viu+ f(x,y) =0 inQ (10.1.1)

As shown in Chapters 1 and 8, the Standard Galerkin Method (SGM) for (10.1.1) is the
inner product of the residual with the test function @,

(P, R) = f Q[ + fx, y)]d2 =0 (10.1.2)
Q
Assuming that the variable u is approximated in the form
u=duu, (10.1.3)

and integrating (10.1.2) by parts we obtain

[ &k)au,,-nidl‘ — (f cba,iq)ﬁ,idg) ug -+—f o, f(x, y)dQ =0
r 19/ Q

or

Koguig = Fu + Gy (10.1.4)
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where
Stiffness matrix Ky = f O, PpidQ (10.1.5a)
Q
Source vector F, = / &, f(x, y)dQ (10.1.5b)
Q
Neumann boundary vector G, = f %au,inidr (10.1.5¢)
r

As we noted in the one-dimensional problem, the interpolation function originally de-
fined in the domain is now a function of boundary coordinate I' in the boundary integral
G,, with @, indicating the dependency on I', not on 2. It represents the interpolation
function describing Ihe way the Neumann data u ;n; varies along the boundaries. Thus,
a suitable form for ¢,(I") would be the one-dimensional linear interpolation function.

The global forms (10.1.5) can be obtained by the assembly of local forms similarly
as in the one-dimensional problems,

E
Ko = J KAl (10.1.6a)
e=1
U FOAQ (10.1.6b)
E
Go =) GV AR, (10.1.6¢)
e=1
where
K¢, = f ol ') d9 (10.1.7a)
Q
FO = f o' f(x, y)dQ (10.1.7b)
G = f &1 in:dl (10.1.7¢)
N N i A
r

The source term f(x, y) and the Neumann data g(I"} = u;n; can be interpolated as
follows:

flx,y) = u(x, ¥) fa fo = [f(x, Y)]a (10.1.8a)
gM) = &u(D)ges 8a = (wim)a (10.1.8b)

These approximations allow the corresponding source term f(x, y) and the Neumann
data u ;n; to be entered directly to the particular node under consideration. Substituting
(10.1.8a) and (10.1.8b) into (10.1.5b) and (10.1.5¢), respectively, we obtain

E
F, = (f %%dﬂ) fo = Cap fo = ) CRMAMATE £ 0%

e=1

Iy

U © oAl UF,(\f)ASf,; (10.1.9)

=3 e=1
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and similarly,

E
e=1
where
FO = ) o (10.1.11)
GO = ¢ ¢ (10.1.12)
with
ce f 090 a0 (10.1.13a)
Q
oo - f ' $dr (10.1.13b)

For linear variations of u ;n; for a boundary element of length /, gf)S(,) =1-r/Lr/h,
the integration of (10.1.13b) gives the result,

It is clear that, regardless of the choice of the local finite elements for the domain,

whether triangular or quadrilateral, the boundary integral (10.1.13b) can remain

independent. )
NG

As shown in Section 8.2, the Neumann boundary data interpolation functions ¢y
and <I> o are given by

off =3(2) ), () =dwm
B =8 Zo — Za), Sa(Zp) = Beg (10.1.14)

mmplying that gf)%) = 1 if the Neumann boundary condition is applied at the boundary
node N and zero, otherwise. This applies also to @ .

The significance and importance of (10.1.14) cannot be overemphasized. Re-
examine (10.1.5¢), (10.1.6¢), (10.1.7c), and (10.1.8b) in conjuction with (10.1.14). The
process through these relations indicates that the local Neumann data are passed along
across the local adjacent elements normal to the boundary surfaces to ensure the con-
tinuity of gradients or “energy balance” (incoming and outgoing normal gradients are
cancelled at element boundaries) until the domain edge boundaries are reached, where
the Neumann boundary conditions are applied and where the Neumann boundary
condition interpolation functions cb( ' and @, assume the valuc of unity if applied,
zero otherwise. Notice that this logic is established easily and clearly by having cons-
tructed the finite element equations in a global form from the beginning, called the
“global approach,” and by seeking the local element contributions in terms of the
Boolean matrix algebra afterward. This is contrary to the traditional approach to the
finite element formulations, from local to global, called the “local approach,” in which
the passage of Neumann data through element boundary surfaces cannot be defined
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(a) (b)

Figure 10.1.1 Finite element discretization. (a) Global nodes; (b) Local nodes.

easily and automatically. The global approach presented here is in contrast to the finite
volume methods in which algebraic equations are generated by physically enforcing the
normal gradients across the local element boundary surfaces. The consequences of oper-
ations involved in both FEM and FVM, however, are analogous, with the conservation
properties maintained in both methods.

The assembly of local elements into a global form follows the same procedure as
in the one-dimensional case. To obtain the global matrices K,g and F, let us consider
the two triangular elements in Figure 10.1.1. Although the expansion (10.1.6a) can be
performed by summing the repeated indices, we may show such operations by matrix
multiplications as follows:

First, we prepare the nodal correspondence table (Table 10.1.1) which indicates the
correspondence of the local node with the global node for all elements.

e=1
0 ) 0
(1) 8 (1) Ky Ky Ki'lro 10 0
= (0 (1) 1)
10 1 0 Ky Ky Ky (1)8(1)8
o0 o) La x ke
2 ) @)
8 ? 8 K7 K, Ky 0010
2) 2) (2
110 ol K K K 8 (1) 8 (1)
00 1)K} K3 KS
or
e (D 0
Ki ke Ko KD 0k k0ak® <0
T Il Kiy' Ky +Ky K +Kyp Ky
a B ! () 2) gl 2 %)
II?I [;32 E3 ?4 K§3) Ky +K1(2 K22)+K1(1) K1(3
41 42 3 44 ) N :
L0 K3(2) K§1 Kgs)_

(10.1.152)
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Table 10.1.1 Nodal Correspondence Table

e= 1 2

Ny

1 2 3
3 2

3 1 4

™ Entries indicate global node numbers corres-
ponding to the local nodes (see Figure 10.1.1)

Similarly,

E
Fo=J a8,
e=1

or
-7
2
i o e
1 2
E, = ? - Fll e (10.1.15b)
3 F2( )+ Fl( )
F @
| F3 _l

The procedure of assembly implied here requiring determination of Boolean ma-
trices for all elements is quite cumbersome. They are useful and convenient in deriving
finite element equations, but are useless in actual performance of assembly operations.
Thus, we should avoid Boolean matrices and implement a scheme that can handle com-

plex geometries with a simple algorithm. An intuitive and more convenient approach
is schematically shown below.

@ ) 0] @ 0] @
1 2 3 1 2 3
@ 1 (I ) 4)) @1 (2) (2) {2)
Kll— KlZ K13 Kll K12 K13
O _ (n t)] n 2 _ (2) 2) (2)
KNM - @ 2 KZI K22 K23 KNM _® 2 Kll KZZ K23
1) (1 1 2 2 (2)
® 3|K;5 Ksz) Kz(a) @ 3 K3(1) ng) K
0 @ €) @
(K v KY v K3 0

m 0] (2) (H (2) (2)
K13 Ku +K22 KIZ +K21 K23
e} )] (2) 9] (2) 2)
Kza K21 +K12 Kzz + Kll K13
2) 2) 1))

0 K32 K31 K33

(10.1.15¢)

® © 0 ©
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Similarly,
Fol1 1@ 1 ®
R =R 2o 2 0
E'lso 3@

1 EPy ] °
P EP+F®| @ (10.1.15d)
““|E"+E®| o

R

Here, the node number with a circle indicates global node. It is seen that the as-
sembled global matrix is obtained by finding the appropriate entries from the local
matrices with the local node numbers replaced by the corresponding incident global
node numbers. For example, Kl( }) of the first element goes to the second row and second
column in the global matrix because the local node 1 is incident with the global node 2.
Similarly, Kg) enters in the second row and third column of the global matrix since
the global node number 2 is incident with the global node 3. All entries in the same
rows and columns are algebraically added together as we move to the second element.
The same procedure applies in order to obtain F,. In this way, we avoid the need to
construct the Boolean matrices, and the entire assembly procedure can be programmed
very efficiently.

The global load vector may be obtained more conveniently in the form

Fa-_‘ aﬁfﬁ

in which only C,g is assembled from the local contributions with f; evaluated at global
nodes. This will be shown in Example 10.1.2. The assembly of the Neumann boundary
data G, and the method of implementation will be discussed in Section 10.1.2.

Example 10.1.1  Assembly of Two Triangular Elements

Given:

) aq)(‘f) acb(e) B(D(e) 8([)(3)
Kyy = dxdy
dy 0y

Required: Calculate K = U o] KJ(\‘,’})\,,A(F) by assembling two local linear trian-
gular elements (Figure E10.1.1) to a global form and compare the results with a single
isoparametric element of Example 9.3.2. forn =4 and n =35,

Solution:

(e) (e) (€)
e Dy 3@ BCD adb
K§v3\4 B [f( ~— ) dxdy = A(bnby + cnCur)

dy dy
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1

Figure E10.11  Assembly of two triangular elements.

where by and ¢y are given in Example 9.3.1 and A s the triangle area.

(1) (M (1) N
Kh Ky, 0 K,
(1) 2) (2) (1 2
K = Ky’ + Kl(l Ky Ky + Kfz)
ap (2) (2)
Ky K3
[ sym K+ K3
[0.6304 —0.3043 0 —0.3261
~ 0.8856  0.1053 —0.6865
- 0.7632 —(.8684
L sym 1.8810

This compares somewhat differently with the single isoparametric element of
Example 9.3.2, although diagonal and off-diagonal values are, respectively, about 10%
larger and 20% smaller than those for the single quadrilateral isoparametric element
(Example 9.3.2). This may influence undoubtedly the solution of differential equa-
tions (see Example 10.2.1). Tt will be shown that the larger diagonal and smaller off-
diagonal values in the stiffness matrix result in smaller responses to given boundary
input data in general. It is concluded that the triangular element is “stiffer” than the
quadrilateral element, as demonstrated in Example 10.2.1. The reason for this be-
havior is that triangular elements possess only three data points, whereas quadrilat-
eral elements provide four data points allowing an additional degree of freedom and
“flexibility.”

10.1.2 BOUNDARY CONDITIONS IN TWO DIMENSIONS

(a) Standard Approach
Dirichlet Boundary Conditions. Dirichlet boundary conditions for multidimensional
problems can be treated exactly the same as in the case of one-dimensional problems.
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12

(a) (b)
Figure 10.1.2 Boundary conditions. (a) Dirichlet boundary conditions (1) =uy = u3z = 2,
W4 = lg = 17 = Uy = 19 = 111 = 4p = 0). (b) Neumann boundary conditions.

That is, the global finite element equations are modified, reflecting the specified Dirichlet
data. For example, let us consider that the global finite element equations using eithor
triangular elements or quadrilateral elements have been obtained in the form

Kopttg = Fy + Gy (10.1.16)

where we set G, = 0 because Neumann boundary conditions are not to be specified in
this case. Only Dirichlet data are furnished as shown in Figure 10.1.2a. We begin with
the assembled global equations,

Ki Ko - - - Kn||w 3}

Ky Kp - - Ko u b
. 20007 o (10.1.17a)
| Ki21 K2 - - - K] [upn] L Fi2 |

Now, if we apply the Dirichlet boundary conditions in (10.1.17a) as given in Figure
10.1.2a, we obtain

1000 0 00 0 0000 r,7 [0 2
0100 0 00 0 0000 s 0 2
0010 0 00 0 0000 s 0 2
0001 0 00 0 0000 " 0 0
0 0 00 Kss 00 Ksg 000 0 s Fs —D;s
0000 O 10 0 0000 ue | | 0 0
0000 0 01 0 00o00||{wl| fol|lT| o
0000K8500K880000 ug F —Dyg
0000 0 00 0 1000 Ug 0 0
0000 0 00 0 010 0|40 0 0
0000 0 00 0 0O0T1O0]|]H" 0 0
0000 0 00 0 00O 1 JL¥2] o L O

(10.1.17b)
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with Ds = Ks1(2) + Ks2(2) + Ks3(2) and Dg = K1 (2) + Ks2(2) + Kg3(2). Itis seen that
the rows and columns corresponding to the Dirichlet nodes are zero with unity at the
diagonal position. The influence of Dirichlet boundary conditions, as imposed here, is
reflected in the Dirichlet boundary vector D, so that

K.gug = Fy + D, (10.1.18)

where D, is given by the second column on the right-hand side with K,g as modified in
(10.1.17) from the given Dirichlet boundary conditions. It is obvious that, if there are
so many Dirichlet boundary nodes, then it is convenient to modify the above matrix
equations in the form

Kss K F: —D
[ 55 58:] [Ms] _ [ 5] N |: 5] (10.1.19)
Kgs Ksg | | ug Fg — Dy
in which all rows and columns corresponding to Dirichlet boundary nodes are elimi-
nated.

Neumann Boundary Conditions. Neumann boundary conditions are implemented using
the integral formof (10.1.5¢) with the local contributions coming from adjacent elements

to the node at which Neumann data gﬁ? are prescribed in the form (10.1.8b),

(e) ou u .
g = (uini)m = (a cosf + ay sin B)M (10.1.20)

which are assumed to be linearly distributed as shown in Figure 10.1.2.

Often in boundary value problems, there are instances in which the Dirichlet and
Neumann boundary conditions are combined at the same location. For example, con-
sider a heat conduction equation

kVT =0
Here, for a resistance layer on the boundary, we specify
kTini +a(T-T) = —q (10.1.21)

where T, T’, &, and g denote the surface temperature, ambient temperature, heat trans-
fer coetficient, and surface heat flux, respectively. This is referred to as the Cauchy or
Robin boundary condition and can be handled by substitution:

kTin; = —Q—aT
with

Q=q—al
Thus, we write

Go=GCo—CupTh (10.1.22)
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with

G =— f ®, 0dl" = UG(") NV v f o' Qdr
r

e=1

* *
Co= [@hadbuar = JEGuaRaly, Clh= [w60 dar
r r

e=]

This process then modifies (10.1.4) in the form
(Kup + Cop) Ty = Fu + Ga (10.1.23)

It should be noted that (i’aB is activated only if the convection or Cauchy boundary
conditions are present. That is, if a global node does not coincide with the boundary
node at which the Neumann boundary conditions are prescribed, then CQB isempty from
the definition, cbu(ZB) = dug. It is cautioned that the local boundary surface matrix is
(2 x 2), which is simply added to the local triangular element stiffness matrix (3 x 3) in
correspondence with the nodal incidence along the boundaries.

(b) Lagrange Multipliers Approach
Any boundary condition prescribed at a boundary node may be imposed through
Lagrange multipliers. Consider the boundary conditions of the form

i, =0 (10.1.24a)
w=a (10.1.24b)
Uz — Ug = b (10.1.240)

Obviously, if b = 0, then the second expression implies u3 = uy. Otherwise, it represents
Neumann boundary conditions (du/dx) cos 6 or (du/dy)sin 6, prescribed at the global
node Z; connected to the adjacent boundary node Z4. For example, if du/dx = c at Z;
and the boundary line of length ! between Z; and Z, is inclined an angle of 6 from the
X axis, then we write

du 13 —uy

N = 10.1.25
dx lcosO ¢ ( )

or
us —itg =b withb = clcosd

Equation (10.1.24) can be written in the form

i
1 00 0 0 2 0
010 0 0 33 —|a (10.1.26)
001 -1 0 N b

\_un_
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which may be rearranged as

Grally = Er (10127)
with r =1,...,m (total number of boundary conditions, m =3 in this case) and
a=1,..., n (total number of global nodes). Here, g, is called the boundary condi-

tion matrix. Let us now introduce quantities A, , referred to as Lagrange multipliers, and
regarded as constraints or forces required to maintain the boundary conditions. Then,
the product of (10.1.27) with the Lagrange multiplier A,

M (Gratia — E) =0 (10.1.28)

may be considered as an invariant or energy required to maintain such boundary con-
ditions.

At this point, we transform the global finite element equation (10.1.16) into a vari-
ational energy,

81 = (Kupitg — Hy)dtty =0 (10.1.29)

or
1
8l = 8(5 Kopiqug — Hlua) =0 (10.1.30)
for which the stationary condition is given by

1
I = iKuB”a”B — Hyu, (10.1.31)
This may be considered as the actual energy contained in the domain. To this we may
add (10.1.28),

1
I = 5 opliattp — Hottg + N (Gratia — E) (10.1.32)
The expression (10.1.32) refers to the total variational energy in equilibrium with the
imposed boundary conditions. The variation of (10.1.32) with respect to every u, and
A+ will lead to the stationary condition
al al

Bt + 8, = 0 10.1.33
o, e T an, ( )

ol =

Since u, and A, are arbitrary, it is necessary that d//du, and 91/9\, vanish. These
conditions yield

Kaﬁua + )\rqru == [‘L
Grallq = Er

Writing these two equations in matrix form, we obtain

[I;O;B q(r)a] [L)ﬂ _ [zﬂ (10.1.34)
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which may be expanded with the boundary conditions of (10.1.26) in the form

[ K11 Ko - : - - Ky, 100 - - - -
Ky K K, 01 o™ H,
21 22 : : . - 2n U
. . . () 0 1 u2 I‘Iz
, .
00 —1
U4 .
S S N I e O (10.135)
Knl KnZ ' : : : Knn 0 0 0 Hn E’;
1 0 0 0 0 0 0 0 0 ;‘ E
0o 1 0 0 0 0 00 0 )\2 E
0 0 1 -1 0 o o0 o LW L™

The solution to these equations provides the values of Lagrange multipliers A, as well as
the unknowns u,. Here \,, interpreted as the boundary forces, assisted in imposing the
boundary conditions. Note that the left-hand side matrix (10.1.35) is still symmetric, but
matrix rearrangements are required to avoid zeros on the diagonal before a standard
equation solver is applied.

Remarks: The Lagrange multiplier approach for implementing boundary conditions
is useful if the finite element formulations are performed by means of methods of least
squares, moments, or collocation in which the Neumann boundary conditions do not
arise naturally since integration by parts is not involved in these methods.

10.1.3 SOLUTION PROCEDURE

In order to illustrate the solution procedure and implementation of both Dirichlet and
Neumann boundary conditions, we present the following examples.

Example 10.1.2  Solution of Poisson Equation by Triangular Elements

Given:
u;=f (=172

with f = 4(x? + y?), exact solution: u = 2x?y?.
Consider the geometry (Figure E10.1.2) with Dirichlet boundary conditions:

(1) u2=u3=u6=u9:u12-—-0
(2) up =1,458
(3) U = O, g = 450, u7; = 3, 528, Up = 5, 832

Neumann boundary conditions along nodes 1, 4, 7, and 10:

5 3 2 5

(4) (—”) =0, (—-Lf) = 300, (—”) = 1,176, (—“) = 1,296,
0x /4 0x /4 ox /4 ax /g
(8_’“‘) ~0 (%) — 180 (3—”) — 1008 (a—”) — 1,944
y/, vy ), 9y /4 3y /10
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‘ 3 3 3

1 =11, =3.162,i, =3.605,1, =3.162,/; =3.

(b) Neumann boundary elements

Figure E10.1.2 Two-dimensional problem with linear triangular
elements.

Required: Using the linear triangular elements, solve the differential equation with
the boundary conditions:

(a) - (1), (2), and (3)
(b) - (1), (2), and (4)

Solution:
Kagug = Fa + Gu
E
(e} A (e) \(
K = KiuA Al
e=1

Kz(\fz)w = f CD%,)iCDSt;),de = A(bnby + cnem)
Q

E
F, = _fsz(bafdg = —js;(buq)BdeB = - anB = —UCﬁLA(ﬁlAS&LfB
e=1
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or
Fo=—Capfp. Cu= U Condaiy.  fo=[4+ )k

The Cg\,M may be determined using (9.3.5) or (9.3.27).
From (9.3.5), we have

Cg}w = f (an + bnx + eny)anm + byux +cyy)dxdy

e -1 1
Cl = A9 = 4 — (bla+2b1c1B +cly)
912
0 _ g0l 1
Ccy=A 5 + E[b][na + (bica + bacy)B + c162Y]
@l 1
9= A 5 T b1+ (bics + bc)B + cres]
@ _ qolL 1
Cl) = A9 = (Do + 2b,c2B + ¢3Y)
EREY
O _ g0l 1
Ci = AT G+ g lbabsa + (bacs + b3ca) + 23]
e 1 1
ClO = A© [6 + 75 (Ba + 2bscsp + C%Y)]

with
oa:xf+x§+x§, B=xiy1 +x2y2 + X33, y=y12+y§+y§

After some algebra, it can be shown that

2 1 1
Ale)
C§5}V,_12 121

11 2

This result can be obtained easily from (9.3.11 and 9.3.27) using the natural coordi-
nate triangular element.

Ll Ll Ll LZ L] L3 A(e) 2 1 1
Cf(\éf,f)\/I: f (D(e)([)(e)dQ f[ 1,1 Ihl, Iols dxdy_ B 1 2 1
LsLi L3l LsLs 11 2

Thus, the global load vector is calculated from the assembly of C(  Matrices for each
element into a global form C,g to be multiplied by the global nonhomogeneous data f3
determined at each global node.

The Neumann boundary vector G, can be calculated as follows:

o= [ b = [ bubpirey = JEhatied =Joa
r r

e=1 e=1
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where
{
“(e) *(e) % () 2 1
Thus
o _ ! [2 1] g 127 +e”
NTel1 2 6

*
where QJ(A? vanishes everywhere except at Neumann boundary nodes. Recall that

&;S\‘j’)(ZM) =8y and tl}kus, <1>§f} = 0 if the boundary node N does not have the Neumann

data prescribed, and @5‘? = 1 if the boundary node N has the Neumann boundary data
prescribed.

1)
oo _ b [0 0} 8| zl[ 0 ]
N T =7 1
610 2 ggl) 6 Zgé)

with () = 0, because the Neumann data are not prescribed at the local node 1 for the
boundary element 1.

_ - @7 [, 2 2]
co_tf2 1 g L 261" + 85"
N " 61l1 | 6 2 2
|12 _gﬁ)_ 6 _g§)+2g§)_
~ - .®7 [, (3 3y 7]
G0 _ b 171 & _ b 281" + g
N T g 2 Hl " 6 3 3
1 H g 6_g5)+2g§)_
_ - @7 [, (4 4]
co_ 2 1)) &” | |28 +e”
N — 7 ==
6Ll 2] _g§4)_ o1 g?+2¢" |
_ _ B (5)_\ -
G(s) B fg 2 0 81 _ [5 2g§5)i|
N = s | =%
6L0 01| | 6 o

with &5 = 0 and

P ou .y g\
gV = (Leoso+ 2sing) =(—) (=1)=0
ox ay > ox /,

u\@ d
g = (5;) (—0.316) + (

1

<

(o5

(2)
) (0.948) =0
Y1

@ 2)
(2) Ju ou
={— —0.316 — 0.948
& (Bx) ( )+ (8y) ( )

2 2
= (300)(—0.316) + (180)(0.948) = 75.84
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Similarly,

¢ =—1674, gV =18597, ¥ =1,3282, g =22544

)
5

g§5’:(—“) (1) = 1,29
ox /

G w2 v e+ ]
o | G| 1|0 +267) + 6 4 87) | | 17208
Gr | 75| (s + 20 + gl %) | | 220205
Gro @) 4 9,0 o e
ta(g)” +28") +65(28;”)

with G, = 0 elsewhere. The sum of F, + (5, 1s given by

T 11350 7 [ 40.00 ]
134.00 0.00
27.00 0.00
629.00 172.03
609.50 0.00
216.00 0.00

Fat Gu=—| 167350 | 7| 2802.05
2008.00 0.00
648.00 0.00
613.50 4372.02
1652.00 0.00
| 81000 | | 000

Note that G, is obtained by an assembly of local data g However for F,,itis preferable
to construct the Cyg matrix independent of local data fM and use the global data f,
instead.

The solution is carried out, and the results are shown in Table E10.1.1. It is seen
that the solution for the Neumann data is less accurate than for the Dirichlet data. It
can be shown that accuracy improves with mesh refinements. This is demonstrated in
Section 10.4.1 for isoparametric elements.

10.1.4 STOKES FLOW PROBLEMS

Stokes flows or creeping flows occur in highly viscous, slowly moving fluids and are char-
acterized by the conservation of mass and momentum. For a steady state, the governing
equations take the form

V.v=0 (10.1.36a)
—uViv4+Vp—pF=0 (10.1.36b)

Although these equations are still linear (note that convective terms are absent), their
solutions may not be easy to obtain because the enforcement of incompressibility
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Table E10.1.1  Computed Results for Example 10.1.2

(a) Dirichlet Problem with the Boundary Gonditions (1), (2), and (3)

Node Exact Solution FEM Solution % Error
1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 450.00 450.00 0.00
5 162.00 110.72 —31.66
6 0.00 0.00 0.00
7 3528.00 3528.00 0.00
8 648.00 508.92 ~21.46
9 0.00 0.00 0.00

10 5832.00 5832.00 0.00

11 1458.00 1458.00 - 0.00

12 0.00 0.00 0.00

(b) Neumann Problem with the Boundary Conditions (1), (2), and (4)

Node Exact Solution FEM Solution % Error
1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 450.00 392.33 —12.82
5 162.00 79.57 —50.88
6 0.00 0.00 0.00
7 3528.00 3264.54 —7.47
8 648.00 458.15 —29.30
9 0.00 0.00 0.00

10 5832.00 5031.26 —-13.73

11 1458.00 1458.00 0.00

12 0.00 0.00 0.00

conditions (conservation of mass) is difficult. As a result, the computed pressure, p,
may be spurious and oscillatory, known as checkerboard type oscillations.

To cope with these difficulties, many methods have been reported in the literature
[Carey and Oden, 1986; Zienkiewicz and Taylor, 1991]. Among them are the mixed
methods and penalty methods, which are presented below.

Mixed Methods

The momentum equation has the second derivative of velocity (v € H?) and first
derivative of pressure (p € H'). In order to enforce the mass conservation (incompress-
ibility condition) we must use an appropriate function for the pressure consistent with
the functional space for the velocity. This is known as the “consistency condition™ or
“LBB condition™ after Ladyzhenskaya [1969], Babuska [1973], and Brezzi [1974]. This
condition requires that the trial function for pressure in the momentum equation and

325
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JAVAVAVAN

)
S
X
O
Linear velocity ~ Constant pressure Quadratic velocity Linear pressure

(a) (b)
Figure 10.1.3 Mixed methods with triangles and quadrilaterals. (a} Mixed interpolation with
constant pressure. (b) Mixed interpolation with linear pressure.

the test function for the continuity equation be chosen one order lower than the test
function for the momentum equation and trial function for the velocity in the continuity
equation, respectively.

Based on these requirements, the SGM equations of (10.1.36a,b) are of the form

ped | P R Y
[Ba,;k o Ilpel=Lolt] o (10.1.37)

If pressure is interpolated as constant (pressure node at the center of an element)
and velocity as a linear function (velocity defined at corner nodes), then such ele-
ment becomes over-constrained (known as “locking element”) (Figure 10.1.3a). To
avoid this situation, we may use linear pressure and quadratic velocity interpolations
(Figure 10.1.3b). However, experience has shown that further improvements are needed
in order to expedite convergence toward acceptable solutions. This subject will be elab-
orated in Chapter 12.

Penalty Methods

Penalty methods are designed such that the continuity equation which actually repre-
sents a constraint condition can be eliminated from the solution process. Thisis achieved
by setting

p=-AV.vy (10.1.38)

where A is the penalty parameter, equivalent to the Lagrange multiplier. The idea is to
set X equal to a large number (A — oo) in the hope that V - v & 0 as seen from

Vov+ g ~ (10.1.39)
Substituting (10.1.38) into (10.1.36b), we obtain
—nVV = AV(V -v) = pF =0 (10.1.40)



10.2 TRANSIENT PROBLEMS — GENERALIZED GALERKIN METHODS

Here A is seen to act as dilatational viscosity. It is now clear that pressure is elimi-
nated from the solution of (10.1.40) in which the mass conservation is enforced through
(10.1.39). Once the velocity components are calculated from (10.1.40), then pressure is
calculated by means of (10.3.38).

Unfortunately, however, the solution of (10.1.40} is difficult because the penalty
term dominates as A becomes large, which is analogous to the over-constraint in the
mixed methods. In other words, the consistency condition is violated. To cope with
this difficulty, the finite element equation integral term involving the penalty function
(pressure term) is given a special treatment by means of “reduced” Gaussian quadrature
numerical integration. Specifically, we under-integrate the penalty term one point less
than the shear viscosity term. For example, one point Gaussian quadrature rule for the
penalty term is performed against the two-point rule for the shear viscosity term of a
linear element. Similarly, a two-point rule for the penalty term against a three-point
rule for the shear viscosity term of a quadratic element is recommended, and so on.

Once again, the mixed methods and penalty methods represent relatively earlier
developments. They are being replaced by more efficient and advanced techniques to
be discussed in Chapter 12 for incompressible viscous flows.

10.2 TRANSIENT PROBLEMS ~ GENERALIZED GALERKIN METHODS

10.2.1 PARABOLIC EQUATIONS

To describe the time-dependent behavior, we may use either the continuous space-time
(CST) method or the discontinuous space-time (DST) method. In the CST method,
continuous interpolation functions in both space and time are used so that

u(x, t) = Puo(x, g (10.2.1)

Alternatively, the DST method allows separation of variables between the spatial and
temporal domains,

u(x, 1) = & (x)u(t) (10.2.2)

This requires interpolations of ®,(x) in the spatial domain and the nodal values u,(f)
for the temporal domain.

The disadvantage of the CST method is the increase in computational dimension
requiring the finite element in time. For this reason, our discussions in the sequel will
be limited to the DST method, in which a time marching procedure is followed.

Consider a parabolic equation or the time-dependent differential equation in the
form

R du(x,r)
ot

Let the nondimensional temporal variable be given by

— Vu(x,t) — f(x,1) =0 (10.2.3)

E=1t/At (10.2.4)

where ¢ and At denote time and a small time step, respectively.
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In the past, the so-called semidiscrete method was used, in which the SGM equation
for (10.2.3) is written as

(@ R = [ cb(aa—‘t‘ . f)dsz 0

where the time derivative of u is approximated by finite differences. Instead, our ap-
proach in DST is to seek a temporal test function independently and discontinuously
from the spatial test function.

The DST method consists of first constructing the inner product of the residual
(10.2.3) with the spatial test function ¢, (x) over the spatial domain and, subsequently,
constructing another inner product of the resulting residual with the temporal weighting
function or test function W(£) over the temporal domain. These steps lead to

1
(W) (@ R) = [ W(&)[ [ (G~ - f)dﬂ]dé =0 (1025)
0 Q
which represents the SGM with DST approximations. The double projections of the
residual onto the subspaces spanned by spatial and temporal test functions are referred
to as the generalized Galerkin Method (GGM) as opposed to SGM. Asnoted in (8.2.41),
the temporal weighting function W(¢) is independent of and discontinuous from the
spatial approximations.
Substituting (10.2.2) into (10.2.5) yields

at

where we may define

1
[0 W(g)[AQB dup(®) Kopiep(t) — Ha]dg =0 (10.2.6)

Mass Matrix
Aup = f b, PpdQ (10.2.7)
Q

Stiffness Matrix
Ko = f b, PpidR2 (10.2.8)
Q
I-lx == Fa + GOL (1029)
with

Source Vector F, = f b, fdQ2
Q

Neumann Boundary Vector G, = / %au,inde.
r

If linear variations of u,(¢) are assumed within a small time step, we may write
u () = dp(E)u? (m=1,2) (10.2.10)

where the temporal trial functions may be derived from the standard one-dimensional
configuration,

b =1-¢&  dy=¢
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Thus,
wa(t) = (1 = £)ufy + €t (10.2.11)

in which m =1 and m = 2 are replaced by the time steps n and n + 1, respectively.
Differentiating (10.2.11) with respect to time, we obtain

alt) _ el DE _ L (it _
at g or At * )

(10.2.12)

which is identical to the forward finite difference of du(r)/d¢. Substituting (10.2.12) into
(10.2.6) yields

[Asp +MALKg] ugt! = [Agg — (1 = )AL K] 1y + At H, (10.2.13)

where H, may be regarded as the forcing function. If H, is time dependent, then it may
be expanded in a manner similar to u, givenin (102.11).

= (1 - &) H +EH™

Temporal Parameter
We define ) as the temporal parameter,

l A~
f Wi(e)ede
p=de (102.14)

/ We)de

Evaluation of the temporal parameter requires an explicit form for the temporal test
function W( ¢) asintroduced in Zienkiewicz and Taylor [1991]. Some of the examples for
W(ﬁ) and the corresponding temporal parameters are shown in Table 10.2.1. A glance
at the temporal parameters suggested above reveals that they remain in the range

0<n=<1
Equation (10.2.13) may be written in the form

Dygugt' = Q7 (10.2.15)

Table 10.2.1 Temporal Parameters for
Paraholic Equations

W(g) m
1-¢ 1/3
£ 2/3
1 1/2
3(E —0) 0
d(E—1/2) 1/2

3(E — 1) 1
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with
DO‘B = Aa[_), + At KﬂB
Qg = [Aaﬁ —(1 - T])AtKaB]u'é + At H,

Notice that, to solve (10.2.15), we must first apply the boundary conditions in a manner
similar to that used 1 1n the steady-state problems. Initial condltlons can be spec1ﬁed in Q7.

Initially, » = 0, and u for the ﬁrst(slgep is calculated from Qu . Then u[3  for the second
time step will be calculated from u, ’ substituted into Qa , thus continuously marching
in time until the desired time has been reached. An adequate choice of the temporal
parameter v and the time step At is regarded as crucial to the success of the analysis.
To this end, we examine the two cases in which n) = 0 and m # 0, corresponding to the
explicit scheme and the implicit scheme, respectively. Notice that v = 1/2 corresponds
to the so-called Crank-Nicolson scheme (Section 4.3.2).

Explicit Scheme
The explicit scheme refers to the case m = 0. Rewrite (10.2.13) in the form
u't = A [(Ayp — A Kyp)u + AtH, | (10.2.16)

and assume that errors are generated each time step, giving € and e;* ! corresponding
to u” and u'"!, respectively, such that

W p ettt = AL [(Ayp — AtK ) (uf + €g) + At Hy] (10.2.17)
Subtracting (10.2.16) from (10.2.17) yields
et = gy €l (10.2.18)

where g, is the amplification matrix
Bay = 8(1'\/ - A;éKBCLAt (10219)

For stable solutions, we must assure that errors at the nth step do not grow toward the
(n + 1)th step; that is,

o™ = [eq]

This requirement can be met when

8oy | = 180y — Ag KysAL] < |8yt =1 (10.2.20)
Thus, in view of (10.2.19) and (10.2.20), and setting

gt = \e! (10.2.21)
we write

(Zoy — May)ey =0 (10.2.22)

The stability of the solution of (10.2.16) can be assured if each and every eigenvalue A,
of the amplification matrix g, is made smaller than unity,

Mol =1
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The largest eigenvalue, called the spectral radius, governs the stability. Since there exists
a bound for At outside of which stability can no longer be maintained, the explicit
scheme is said to be conditionally stable.

Implicit Scheme
The implicit scheme arises for n # 0 in (10.2.13). Solving for ¥, we obtain

U = (Ay + M0 Koy) H{[Ayg — (1 —m)AIK g ufl + At H, | (10.2.23)
The amplification matrix becomes

Bop = E;«,l Dyg
with

Eyy = Agy +MALK,y
Dy = Ayp — (1 = )AL Ky

For all values of Az, it is seen that we have g, < 0g, and the implicit scheme is
unconditionally stable.

To study the stability behavior of (10.2.23) let us examine one-dimensional linear
finite element approximation of (10.2.23) with three nodes,

1 1 +1 1 1 1_ il

E(Au’;fl +4aui + Au’}il) + nD(—u?fl + 2 - ”Jil)

= —D(—u’}_1 +2u — u’}+l) (10.2.24)

with Aw*' = 47" — w" h = Ax, and D being the nondimensional convergence para-
meter.

At
D=v—
Ax?
The combined spatial and temporal response of the amplitude 4" may be written as
“7 — eikxemt — eiijxecknAt — eiijxgn (10225)

where g = e“*" ig the amplification factor, with k and ¢ being the wave number and

wave velocity, respectively. Thus,
A = MM (g — 1)g" (10.2.26)
Substituting (10.2.25) and (10.2.26) into (10.2.24) leads to

g'kiax gh [(g— 1) l:-é(ele +44+e)+nD(—e 42— e“’)]A—D(—e‘le +2—e’“)} =0

with
6 = kAx
or
2D sin’ (g)
g§=1+—-

—3 — €080 +nD(cos6 — 1)
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For 6 — 0, the amplification factor takes the form
g=1- Do’
It is seen that stability is maintained for g < 1 or
DO* > 0
which shows that the stability is proportional to the square of the phase angle.

10.2.2 HYPERBOLIC EQUATIONS

Consider the hyperbolic equation in the form
_ ’u
a2

in which the time dependent term is of the second order. Proceeding in a manner similar

to the parabolic equation, we write the DST/GGM equations as

(W(E), (o, R)) = f W(E) Aupiip + Kogitp — Ha)dt =0 (102.28)

—ui— flx.y)=0 (10.2.27)

In order to handle the second order derivative of  with respect to time, we must provide
at least quadratic trial functions for i,,

Uy = Pt (m=1,2,3)

Here, &,, may be definedin 0 < £ < 1or —1 < £ < 1 as follows:

ForO0<§& <1 For—1<§¢ <1
- 1 N 1
b=t 5)E-n b= EE- D
by = —4E(E - 1) b, =1-¢2

& =2(c - 5 by = SEE+1)

Using the interval —1 < £ < 1, since this interval is more convenient for integration, we
obtain

8 Bg dE 8 dua [OENY 1,
ua:———ua:———z‘——— —_— :_(u(x —_
ot € 9t D€ 0& \ Jt Ar?
which is identical to the finite difference form for the second derivative of u,.
Defining the temporal parameters m and { in the form

1. LA 1
:Ef_lwz(ue)d& cz[_lW(ui)de

1 1
/ Wt f Wa
1 ~1

the recursive finite element equation takes the form

1
(AOLB + T]AIZKQB)ME+1 ] liZAaB —_ (E — 2'T]+ C)AIZKQB]ME

2l + ) (10.2.29)

(10.2.30)

- [A«xs + (% +n- C)AtzKag]u§1 + A’H, (10.2.31)
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Table 10.2.2 Temporal Parameters for
Hyperbolic Equations
W (&) M L
S(E+1) 0 1/2
E—-0) 0 172
3(E-—-1) 1 372
L0<g<tl 1/6 1/2
1+& -1<&<0 4/5 372
1—¢ —-1<£<0 1/12 172
-£0=<¢E=<1 1/4 172
£ 1/4 172
1—§2 1/10 1/2
(1/2)6(1 + &) 4/5 3/2

Once again, =0 and m =1 lead to the explicit and implicit schemes, respectively.
Various values for W, and the corresponding temporal parametersmand {, are presented
in Table 10.2.2.

For highly oscillatory motions, quadratic approximations may be inadequate and
cubic approximations are required for acceptable accuracy. Cubic variations can be
formulated using the Lagrange polynomials for —1 < & < 1 so that u, and ii, take the
forms

"o = —%(g #3)(6 3)€ -0+ s e 1) v

e (g3 )e—nu e e (e ) (e~ 1)
1

. 9 n— 27 2 n— 27 2 "

and

Substituting the above into (10.2.28), we arrive at

9 1 1 n+1
[Aasﬁ(mf +2)+ At R(TH-@ - Y - §)Ku[3:l

2 ,27 1 1
. ATy -2 “ VKo |
+[ B16( oy = 3)+ 16( " 3““’3) B]”B
6 NYNEEL 1@ Nk |
- = — - =C - - u
0‘816 Y TAGEERERREY A

9 1
2)+ Ar? —y — — | Ky | 1472
[ a[316( 6y +2)+ ]6( n+{+ =y 9) B}”B

— AP(Fy+ G,) = (10.2.32)
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with

) / ]IV“V(&)&%& N fW(&)g £ fW(:z)&dez

l 2
/ Wds f Wds f Wdt
—1

Appropriate choices of W(g) will lead to a variety of integration formulas.
Using the Newton backward difference (Chung, 1975), it can be shown that the cubic
approximations may also be given as

[11Aeg +6Ar(1 — 0)Kaglvi™' + [—18Acg + 6A10 Kop]vi
+ Ao (v —2vi ) —6AIHy =0 (10.2.33)

where 0 <6 < 1.

10.2.3 MULTIVARIABLE PROBLEMS

The finite element formulation of multivariable problems which occur in two- or three-
dimensional problems may be best handled using tensors. Let us consider a differential
equation of the form

v
Y V- V(V.V) = (10.2.34)
or
Bv,-
R,‘ = E — V,‘_j]' — Vi~ ﬁ =0 (10234b)
where the variables v; may be approximated spatially as
vi =®,vy (i =1,2)for2-D (10.2.35)

Note that v,; implies v; at the global node «. The GGM equations for (10.2.34b) become
s ~ Bv,»
(W(E), (Po. Ri)) = /g W(%)ll[g q’a(;{ — Vijj— Vjji — f,)dﬂ]d‘i =0 (10.2.36)
which yields
fW(g)[AQBS,‘kVBk + (Kka + K B]Bfk)vﬁk Fy - Gw']dg =0
£

where

E
Aup :[ D, PpdQ :U[ oo daal) ALy UA(” INVINTA
e=1

Koipe = f D Dpad R = U / ol o) dak) Al _UK,(;),(‘;,’(A‘” VA

e=1

@) © @ © AL @10 70 Al
K = /cbu,qaﬁ,dsz de’N, W doai Al UKN]MIA A,
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Foi= / D, PpdQ28; fax = Cop ik fok = U C(e) ASSuA(E) ik fak
Q

e=1

Cﬁ&:f ool do
Q

E
Goi = f S(vijn; +vim)dl = |_J G AR,
r

e=]

For the case of Figure E10.1.2, we have

6 = [ 640 d8parosgal, = U Cilmeciial
e=1
(e) 7 (e)
2 0 1 07|8n 2617 + 851
o2 0 1] el | ]2 +el
“lo L o alle | Ofe+2e
el

where
gﬁil (2via + va2)m + viang
gn?z = va.ahy + (Vi + 2v22)m,
With linear temporal approximations, the global finite element equations take the form
[Acpdix + TlAr(K(:Bk + Kg;)a,ﬁ )]ngl = [Awpdic— (1~ TI)AI(KS% KS;)ME’ )]V’ék
+ At(Fyi + Gui) (10.2.37)

The solution of (10.2.37) will proceed similarly as a single variable problem except that
the multivariables vg are to be solved simultaneously.

10.2.4 AXISYMMETRIC TRANSIENT HEAT CONDUCTION

Consider the transient heat conduction, without convection, in an axisymmetric geo-
metry,

aT 2T 0T 13T
ok —— 3+ Y =0 10.2.38
PEr o (8r2 92 +; Br) ( )

where p, ¢p, T, k, and r are the density, specific heat at constant pressure, temperature,
coefficient of thermal conductivity, and radius of a cylindrical geometry, respectively.
The generalized Galerkin finite element formulation of (10.2.38) leads to

2 2T 82T 18T
fW(g){./(; ff l:pcpa_“_k(drz +@+;§)]rd8drdz]d§:0

(10.2.39)
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Here, the partial integration of the term containing °7/d* in (10.2.39) becomes

o « oT 30, 3T
[ [f 0.2 vavira: = ( [ 6.2z ([ 22
oT
— f/ d)a—drdz)
or
Thus, after canceling out the 9 T/9r terms, we have
1
[ W@ AT + K Ts = Gordt =0 (10.2.40)
0

where, for isoparametric quadrilateral elements, with 7 = &, r,, we obtain

1 1
AGB = 21T/ [ pcPCDHQDBCDyrlel dng]
-1J-1

Here, d£ refers to the isoparametric coordinates rather than the nondimensional time,

Lol 799, 00 9D, 00
Kg =2 K —= " Po_r |J\did
B ﬁ{ﬁlfl ( ar or + dz 0z ) AL

Gy =27 f Gk Timrdl” = 27 f — &.&(T — T')rdrl
r r

- zw[f TPy b rdl Ty +fa&3aT'rdr] = KopTy + Ga
r r
where we set

—kT,'I’ll' = E(T - TI)

with @ and 7" being defined as the heat transfer coefficient and ambient temperature,
respectively. Here, K «p 18 the convection boundary stiffness matrix representing the
contribution of ambient temperature toward the boundary surface:

KOLB =21T/q)u¢)[3$yr'ydr
r

é[x =2’1Tf T’E&)a 5)1, rydl
Ir

where K o should be combined with K.g but its contribution is restricted only to the
convection boundary nodes along the surface of convection boundaries as shown in
(10.1.23). Thus,

o . * *
fo W(ENAap Tp + (Kag + Kop) Ts — Ga)dE =0 (10.2.41)

This ordinary differential equation will then be integrated over the temporal domain
as in Section 10.2.1.
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10.3 SOLUTIONS OF FINITE ELEMENT EQUATIONS

Solutions of simultancous algebraic equations are carried out by using either direct or
iterative methods. The direct methods yield answers in a finite number of operations
(Section 4.2.7). They include Gauss elimination, Thomas algorithm, etc., which are
suitable for linear equations. The iterative methods [Saad, 1996] include Gauss-Seidel
methods, relaxation methods, conjugate gradient methods (CGM), and generalized
minimal residual (GMRES) methods, among others. Here, solutions are obtained
through a number of iterative steps, accuracy being increased with an increase of
iterations. These methods are suitable for nonlinear as well as linear equations.

For a large system of equations, it is expected that the assembly of element stiffness
matrices into a global form would take a prohibitive amount of computer time. This
can be avoided by the so-called element-by-element (EBE) solution scheme [Hughes,
Levit, and Winget, 1983; Carey and Jiang, 1986; Wathen, 1989, etc.]. In this approach,
we replace the matrix assembly process by vector operations. This will be presented in
Section 10.3.2.

The coverage of solution methods for algebraic equations in general is beyond the
scope of this book. However, we select the conjugate gradient method (CGM) as one
of the most popular schemes in CFD and present its brief description, followed by the
EBE approach for finite element equations.

10.3.1 CONJUGATE GRADIENT METHODS (CGM)

Let us consider the global system of finite element equations in the form
KUy = F, (10.3.1)

The iterative solution by the conjugate gradient methods (CGM) can be obtained, using
the following steps:

(1) Assume initial values U\
(2) Determine the residual E.”

EY) = F, - KUY (10.3.2)
(3) Define the auxiliary variables P.”
PO(‘r) = EU)
(4) Compute rth iteration residual
EV = K P (103.3)
(5) Compute the correction factor )
Eg)PO(Lr)
al’) = o (10.3.4)
Eg PB

(6) Compute the solution UY ™"
U = g 4 ¢ po) (10.3.5)
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(7) Compute the residual £y "
EC+) = EO) a"EY (10.3.6)

(8) Compute the correction factor b +1)

(r+1) pAr+1)
E. " Eq
B+ — e (10.3.7)
E'Ey
B B
(9) Define the auxiliary variables 2"
PU+D = EU+D 4 ptrh plo) (10.3.8)

(10) Return to Step 4 and repeat the process until convergence.

If the matrix K,g is nonsymmetric, then it is possible to symmetrize K.g by multi-
plying the transpose of the stiffness matrix in (10.3.1) as follows:

[KI"[K][U] = [K]"[F]
or
Kyo KygUp = Kyo I

This can be written in the form

Apls = F, (10.3.9)
with
Agp = Kya Ky, Fo= Kw?v

The same procedure as given in Steps 1 through 10 above can be applied to (10.3.9).
However, this will require extremely large operations and we may avoid them by con-
structing the product of the transpose of the stiffness matrix and the auxiliary variables
as follows:

(1) Start with the initial guess U”
(2) E(EU) = Kva(Fv - K*/BUB)
3) PV =ED
() r
(4) E," = KvaBPé )

) plr)
(5) a0 = B B

(6) U(YH) - Uér) +a(r)P(£f)

(7) EU*0 = EO —aE,
(8) b(r+1) _ E((xr+l)ng+1)
£ )
B B

(9) P(ng) — Eg+l) + p) pr)
10) Return to step (4) and repeat the process until convergence.
p
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Example 10.3.1
Given: Consider a system of algebraic equations of the form,

1 -1 0 Ui 0
-1 2 =21 |=]-1
0o -2 1 Us 1

Required: Solve using the CGM algorithm and compare with the exact solution:
U=1U0=1U=1.

Solution:

(1) Assume U\? = I:O

< o
| I

T 0] 1 -1 0 0 0
RQEdD=| ~1|~-|[-1 2 2|]|0|=]-1
= 0 -2 1 0 —1
-0
(3) P =] -1
__1_
1 -1 0 0 1
HE =|-1 2 =2||-1|=]0
0 -2 1 —1 1
0+1+1
o) - 2T T
) @ =557 = 2
K 07 [0
G UD=10|+(-2)|-1]|=]|2
0 -1] {2
0 17 [2
(N EV=|-1|-(2)|0|=]|-1
| -1 1] L1
8 p = 21T
O+1+41
"2 0 2
Q) PO=| -1 |+3)| -1 |=]| -4
1 -1 —2
1 -1 0 2 6
QO EV =] -1 2 —2||-4]|=]|-6
0 -2 1 ~2 6
4442
(11) oV + ° 025

T 12124—12° 24

0 2 0.5
(12) UD =2 [4+(025| -4 |=]| 1
2 -2 1.5
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Repeating another cycle of iteration, we obtain

1.0002
U =1 1
0.9998

The next step (7) shows the residual E§3) to be zero and the exact answers, U; = U =
U5 =1, are obtained.

If the stiffness matrix K,g is nonsymmetric or nonlinear, then the procedure for
(10.3.9) can be used. It is expected that convergence toward the exact solution will
be much slower. The GMRES methods suitable for CFD equations will be covered in
Section 11.5.2.

10.3.2 ELEMENT-BY-ELEMENT (EBE) SOLUTIONS OF FEM EQUATIONS

A large system of equations is encountered when the number of finite element nodes
increases in order to improve accuracy. The assembly of element stiffness matrices into a
global form and solutions may occupy a large portion of computing time. To avoid this
inconvenience, we shall examine the so-called element-by-element (EBE) approach
[Hughes et al., 1983; Carey and Jiang, 1986; Wathen, 1989, etc.], in which the assembly
of entire stiffness matrices is eliminated. The EBE methods using the Jacobi-iteration
and conjugate gradient methods are described below.
Let us consider the global finite element equations of the form,

KU = Fy (10.3.10)

The global stiffness matrix K,g can be split into the diagonal components Dy and the
off-diagonal matrix N, as follows:

Kop = Dog + Nog (10.3.11)
leading to

(Dag + Neg)Us = Fy (10.3.12)
or

Dop Ut = FO — NpUY” (10.3.13)

where the diagonal matrix and off-diagonal matrix are allowed to be associated with

the iteration steps of U at (r + 1) and (r), respectively. Subtracting Dg U[g') from the
left- and right-hand sides of (10.3.13), we obtain

Dog(U§™" = Uy = F{) = (Nog + Do) Uy (10.3.14)
or
Ue = U8 - D(Fy' - FY) (10.3.15)
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with the diagonal matrix playing the role of the preconditioning matrix and

F.) = (Neg + D)UY = KogUY) = U FoaL

Fo = k9,u (10.3.16)

[t 1s clearly seen that the assembly of the stiffness matrix has been replaced by the
element-by-element basis as a column vector, identical to the assembly of the source

vector F") such as in (10.1.15b). Thus, the solution of (10.3.10) is obtained as

(r+1) U] (r) (—F—] _ Fl)/Dll (r)

_|U2| _|(F2-F)/Dn (10.3.17)

U,
U,

In order to increase convergence and accuracy, it is necessary to implement a standard
relaxation process in the form

U=¢tU") 4+ (1 - E)U(')

with 0 <& <1 or preferably £ = 0.8. The procedure described above resembles the
Jacobiiteration method and, thus, this scheme is called the EBE Jacobi method [Hughes
et al., 1983].

The EBE scheme may be incorporated into any high-accuracy iterative equation
solver. For example, let us consider the conjugate gradient method. Here, we may
adopt the following step-by-step procedure.

(1) Assume initial values U,
(2) Compute the residual £

EN'=F, - KU, =F,—F, (10.3.18)
with

E
U (E)A(e)
e=1

FY = K$,Uy
(3) Set the residual as the auxiliary variables £
P = ED (10.3.19)
(4) Determine the rth iteration residual £ as
EV = Ko P = U HOAE (10.3.20)
e=1
with
H(e) K(f’) P(’)
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(5) Determine the correction factor a”

2 = E%’ip o (10.3.21)
E, P

(6) Solve UL

ur=h =y 4 apv) (10.3.22)
(7) Determine the residual ES

EUTD = g _ g ED (10.3.23)
(8) Compute the correction factor h+1)

r1) phr 41
pr+1) — % (10.3.24)
BB

(9) Determine the auxiliary variables P

P — B | o) pin (10.3.25)

(10) Return to (4) and repeat until convergence.

For time-dependent and nonlinear problems, procedures similar to those above can
be used. In order to expedite the convergence, however, appropriate preconditioning
processes are important. These and other topics on the equation solvers such as GMRES
and the EBE algorithms will be presented in Section 11.5.

10.4 EXAMPLE PROBLEMS

10.4.1 SOLUTION OF POISSON EQUATION WITH ISOPARAMETRIC ELEMENTS

In this example, we repeat Example 10.1.2 using 6 and 24 bilinear (4 node) isoparametric
elements by removing the diagonals (Figure 10.4.1.1). Use the three-point Gaussian

7

21
16
/ ) I 31
4 11 /
22 27
/ 6 _—"1 17| _—T"t—x
. I /7/4]_2//
2"
1 3 kx
: 5 8 8 3 18 2 28
4 34
9 14 19 24 29
3 6 9 12 5 10 s 20 25 30 35
(a) (b)

Figure 10.4.1.1 Meshes for Example 10.4.1.1. (a) Six bilinear isoparametric element system. (b) Twenty-four
bilinear isoparametric element system.
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quadrature integration. The solution procedure is as follows:

K = U K,a80%,

e=1

K= [ ofofan =33 wpukuu(emy)

p=1g=1

E
Fo=Cqpfa= U Cf(\?\/l ¥ A(L e fp = U [ZprwchM(gp’ nq)} (e) Al v f
e=1

p=1 g=1

It is obvious that no local evaluation of the load vector is necessary and it is convenient
to leave fg = [4(x* + ¥*)]p in the global form, unlike the Neumann boundary vector
which was evaluated in the local level and assembled into a global form.

The Neumann boundary vector remains the same as in the case of triangular ele-
ments, and is independent of the Gaussian quadrature integration. If desired, however,
the Neumann boundary vector may be rederived from the one-dimensional isopara-
metric (natural) coordinate. The results would be the same.

The Neumann boundary vector G, for the six-clement problem is the same as in
Example 10.1.2, although the load vector £, is different due to the different integration
scheme. The summary of results is given in Table E10.4.1.1.

The following conclusions are drawn from Examples 10.1.2 and 10.1.3.

(1) The six isoparametric elements provide higher accuracy than twelve triangular
clements. At interior nodes (5 and 8), triangular elements give answers smaller
than the exact solutions, whereas the isoparametric elements lead to larger
values, indicating that triangular elements are stiffer than the isoparametric
elements as seen in Examples 10.1.2 and 10.1.3.

(2) In the coarse grid system, the Neumann problem is not as accurate as in the
Dirichlet problem.

10.4.2 PARABOLIC PARTIAL DIFFERENTIAL EQUATION IN TWO DIMENSIONS

Consider the two-dimensional linear partial differential equation of the form

9 ?u  u
(-

ot ax?  dy?
v a’v 32
o "V - 5=
at 8x2 ay?
with
1 1
fr= — 2vy, L=-

(I+1)?
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Table E10.4.1.1

Computed Results for Example 10.4.1.1

(a) Dirichlet Data (6 elements)

(b) Neumann Data (6 elements)

Node ExactSolution FEM Solution % Error Node Exact Solution FEM Solution % Error
1 0.00 0.00 0.00 1 0.00 —28.99 0.00
2 0.00 0.00 0.00 2 0.00 0.00 0.00
3 0.00 0.00 0.00 3 0.00 0.00 0.00
4 450.00 450.00 0.00 4 450.00 339.18 24.63
5 162.00 197.05 21.64 5 162.00 130.63 19.36
6 0.00 0.00 0.00 6 0.00 0.00 0.00
7 3528.00 3528.00 0.00 7 3528.00 3221.45 8.69
8 648.00 667.45 3.00 8 648.00 601.47 718
9 0.00 0.00 0.00 9 0.00 0.00 0.00

10 5832.00 5832.00 0.00 10 5832.00 5697.71 230

11 1458.00 1458.00 0.00 11 1458.00 1458.00 0.00

12 0.00 0.00 0.00 12 0.00 0.00 0.00

(c) Dirichlet Data (24 elements) (d) Neumann Data (24 elements)

Node Exact Solution FEM Solution % Error Node ExactSolution FEM Solution % Error
1 0.00 0.00 0.00 1 0.00 —3.69
2 0.00 0.00 0.00 2 0.00 0.00 0.00
3 0.00 0.00 0.00 3 0.00 0.00 0.00
4 0.00 0.00 0.00 4 0.00 0.00 0.00
5 0.00 0.00 0.00 5 0.00 0.00 0.00
6 91.13 91.13 0.00 6 91.12 70.60 22.52
7 63.28 65.68 3.79 7 63.28 49.13 22.36
8 40.50 44.09 8.86 8 40.50 31.82 2143
9 10.13 12.10 19.47 9 10.12 6.51 35.67

10 0.00 0.00 0.00 10 0.00 0.00 0.00

11 450.00 450.00 0.00 11 450.00 409.87 892

12 288.00 287.79 .07 12 288.00 257.40 10.63

13 162.00 170.18 5.05 13 162.00 148.10 8.58

14 40.50 44.51 9.90 14 40.50 34.16 15.65

15 0.00 0.00 0.00 15 0.00 0.00 0.00

16 1458.00 1458.00 0.00 16 1458.00 1392.81 4.47

17 820.13 830.87 1.31 17 820.12 781.97 4.65

18 364.50 379.19 4.03 18 364.50 349.83 4.02

19 91.13 94.76 3.99 19 91.12 R1.24 10.84

20 0.00 0.00 0.00 20 0.00 0.00 0.00

21 3528.00 3528.00 0.00 21 3528.00 3381.90 4.14

22 1800.00 1812.86 g1 22 1800.00 1746.66 2.96

23 648.00 648.80 12 23 648.00 615.65 4.99

24 162.00 163.41 87 24 162.00 150.18 7.30

25 0.00 0.00 0.00 25 0.00 0.00 0.00

26 4753.13 4753.13 0.00 26 4753.12 4659.78 1.96

27 2538.28 2530.26 32 27 2538.28 2449.15 3.51

28 1012.50 1005.26 71 28 1012.50 983.92 2.82

29 253.13 252.50 25 29 253.12 244.03 3.59

30 0.00 0.00 0.00 30 0.00 0.00 0.00

3 5832.00 5832.00 0.00 31 5832.00 5586.42 4.21

k) 3280.50 3280.50 0.00 32 3280.50 3280.50 0.00

k) 1458.00 1458.00 0.00 33 1458.00 1458.00 0.00

34 364.50 364.50 0.00 34 364.50 364.50 0.00

35 0.00 0.00 0.00 35 0.00 0.00 0.00
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NN N NN

189

[ " T~ N B N o

Figure 10.4.2.1 Geometry and discretization for Section 10.4.2 with N repre-
senting the Neumann boundary conditions. Dirichlet and Neumann boundary
conditions are prescribed from the exact solution.

Exact Solution:

Lo, Lo,
U= ——4+xy, V=——+4x
trz 7 1y %

Required: Solve the above partial differential equations using GGM for the coarse,
intermediate, and fine meshes with the Dirichlet and Neumann boundary data as shown
in Figure 10.4.2.1. Set v =1, At =107* n=1/2 Set u = v = 0 initially at all interior
nodes and observe convergence behavior.

Solution: The steady state is reached at t = 0.25 and 0.4 for u and v, respectively, at
x =4.5and y = 0.75 to the almost exact steady-state values as shown in Figure 10.4.2.2.
In Section 11.6.4, the results with nonlinear convection terms will be presented, demon-
strating the solution convergence as a function of grid refinements.

200
I

16.0
!

Ugeady=15.18 (exact)
U 100=15.19 (computed)

8.0 12.0

40

Veady=2-93 (exact)
Viei00=2.54 (computed)
I L
0.0 0.2 04 0.6 0.8 1.0

TIME

Figure 10.4.22 Convergence history of u and v(v = 1.0, Ar = 0.01,
x=45and y =0.75).

0.0
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10.5 SUMMARY

In this chapter, we have shown the basic computational procedures involved in finite
element calculations for linear partial differential equations, using the standard Galerkin
methods (SGM). Assembly of multidimensional finite element equations into a global
form and various approaches to implementations of both Dirichlet and Neumann
boundary conditions are demonstrated. Furthermore, we have described the mixed
methods and penalty methods in order to satisfy the incompressibility condition in-
volved in the Stokes flow.

In dealing with time-dependent problems, formulations with the generalized
Galerkin methods (GGM) for parabolic and hyperbolic partial differential equations
are presented. In particular, it was shown that temporal approximations can be provided
independently and discontinuously from spatial approximations.

Solution procedures of finite element equations in general and solution approaches
using clement-by-element assembly techniques in particular are also elaborated. It is
shown that, by means of the element-by-element (EBE) vector operations, the formu-
lation of entire stiffness matrix array can be avoided.

Note that convective or nonlinear terms are not included in this chapter, which
constitute one of the most important aspects of fluid dynamics, both physically and
numerically. This is the subject of the next chapter.
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CHAPTER ELEVEN

Nonlinear Problems/Convection-Dominated Flows

For fluid dynamics associated with nonlinearity and discontinuity, there have been sig-
nificant developments in the last two decades both in finite difference methods (FDM)
and finite element methods (FEM). Concurrent with upwind schemes in space and
Taylor series expansion of variables in time for FDM formulations with various or-
ders of accuracy, numerous achievements have been made in FEM applications since
the publication of an earlier text [Chung, 1978]. These new developments include gen-
eralized Galerkin methods (GGM), Taylor-Galerkin methods (TGM) [Donea, 1984],
and the streamline upwind Petrov-Galerkin (SUPG) methods [Heinrich et al., 1977;
Hughes and Brooks, 1982], alternatively referred to as the streamline diffusion method
(SDM) [Johnson, 1987], and Galerkin/least squares (GLS) methods [Hughes and his
co-workers, 1988-1998]. In the sections that follow, it will be shown that computational
strategies such as SUPG or SDM and other similar methods can be grouped under the
heading of generalized Petrov-Galerkin (GPG) methods. Recent developments include
unstructured adaptive methods [Oden et al., 1986; Lohner, Morgan, and Zienkiewicz,
1985], characteristic Galerkin methods (CGM) [Zienkiewicz and his co-workers, 1994—
1998], discontinuous Galerkin methods (DGM) [Oden and his co-workers, 1996-1998],
and flowfield-dependent variation (FDV) methods [Chung and his coworkers, 1995
1999], among others. On the other hand, the concepts of FDM and FEM have been
utilized in developing finite volume methods in conjunction with unstructured grids
[Jameson, Baker, and Weatherill, 1986]. It appears that FDM and FEM continue to
co-exist and develop into a mature technology, mutuaily benefitting from each other.
We begin in this chapter with the general discussion of boundary conditions for the
nonlinear momentum equations, followed by Taylor-Galerkin methods (TGM) and gen-
eralized Petrov-Galerkin (GPG) methods as applied to Burgers’ equations. Some spe-
cial topics such as Newton-Raphson methods and artificial viscosity are also discussed
in this chapter. Applications to the Navier-Stokes system of equations characterizing in-
compressible and compressible flows are presented in Chapters 12 and 13, respectively.

11.1 BOUNDARY AND INITIAL CONDITIONS

Detailed treatments of boundary conditions with reference to FDM were presented in
Section 6.7, In FEM formulations, Neumann boundary conditions arise from the partial
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integration of the inner product governing equations. This is an important aspect unique
and advantageous in FEM, not available in FDM.

In general, precise definitions and implementations of boundary and initial con-
ditions play decisive roles in obtaining acceptable and accurate solutions in fluid me-
chanics and heat transfer. As seen in Chapters 1 and 2, Neumann boundary condi-
tions are derived from the inner product of the partial differential equation with test
functions and by means of partial integrations of this inner product down to the mth
order from the 2mth order derivatives of the governing partial differential equations.
Neumann boundary conditions arise “naturally” in this process with derivatives of
order 2m —1,2m —2, ... m (weak derivatives). Derivatives of order below m (m —1,
m =2, ...0)are referred to as Dirichlet boundary conditions. These definitions as given
in Chapters 1 and 2 for linear problems are applied to the nonlinear convective flows
in this section.

Specification of boundary conditions depends on the types of partial differential
equations (elliptic, parabolic, or hyperbolic) and types of flows (incompressible, com-
pressible, vortical, irrotational, laminar, turbulent, chemically reacting, thermal radi-
ation, surface tension, etc.). We shall limit our discussions of boundary and initial
conditions to simpler and general topics of incompressible and compressible flows in
this section. More complicated and specific subjects will be treated in their respective
chapters and sections, Part Five, Applications.

11.1.1 INCOMPRESSIBLE FLOWS

For simplicity, let us first examine the steady-state incompressible flow governed by
the conservation of mass and momentum. In order to obtain the correct forms for the
boundary conditions, the governing equations must be written in conservation form.
This is because the conservation form allows the partial integration to be carried out
correctly. Thus, we write

Continuity
Vii = 0 (11113)
Momentum
d
g;i—(pV,'Vj —()','/‘)-—ij =0 (1111b)

where o;; is the total stress tensor,
oij = —pdj + Tij = —pdj + W(vij + Vi)

To determine the existence of Neumann (natural) boundary conditions, we construct
an inner product of the residual of the governing partial differential equation with an
appropriate variable which leads to a weak form. Since the primary variable is the
velocity for the momentum equation, we write the energy due to the momentum as

0
J = (Vj, Rj) = /S;Vilia(pViVj + th-,- — ’T[']‘) — pF]}dQ (11128.)
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Integrating (11.1.2a} by parts, we obtain

J = f vi(pvivj + pd;j — 1) n:dl —[[ij_jVjVj + VD
r Q

- }L(Vj,['V,"j + Vj,ng,,‘) —+ ijV,']dQ (1112b)

Mathematically, the boundary integral in (11.1.2b) denotes the Neumann boundary
conditions. Physically, it represents the energy required on the boundaries to be in
balance with that available in the domain. Here, the boundary forces per unit normal
surface area are identified as

pviVin; + pa,‘jn,‘ — T = S/(il) - Sﬁz) onl'y (11.1.3)

where S}l) and Sﬁ.z) indicate the normal surface convective stress and normal surface
viscous stress (traction), respectively.

pu(uni 4+ vay) + pn
Sﬁ']) =pVivin + pd;n; = { L =12 (11.1.4)
pv(uny + vmy) + pn,

28u n ou i ov
—n —+ —|n
H ax ay  ox :

2 .
S =1 = w(vig + v = (=12

! av + ou +28V
—+ —|n —n
H ax oy ! ay :

with vi = u, vz =v. A glance at (11.1.4) indicates that 5" = pn; for a solid wall
(vin; =0), as defined in Figure 11.1.1 where the pressure is to be specified as a
Neumann boundary condition. The normal surface traction S}z) is contributed by viscous
stress normal to the surface. For example, consider the vertical surface where 6§ = 0° on
the right side (outlet) and 6 = 180° on the left side (inlet). Let us examine the outlet
face where ny = cos(0°) = 1 and n, = sin(0°) = 0. For horizontal (x-axis) and vertical

(11.1.5)

n

Figure 11.1.1 Definitions of direct cosines in two-
dimensional flows.
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(y-axis) directions, we have, respectively,

d
*(5)
2 X ..

Sﬁ ) —_ 'T”'nj et av au (l’ ] = 1,2) (11]6)
{(5+5)

Alternatively, along the left side (inlet), ny = cos(180°) = — 1 and n; = sin(180°) =0,

a
2(5)
(2) _ dx
/ v N du
H dx oy

Similarly, for the top and bottom horizontal surfaces, respectively, with 6 = 90° and

S (i,j=1,2) (11.1.7)

0 = 270°
('du N 'av)
M —— [—
dy | a
§9 = : o i=1,2) (11.1.8)
)
ay
and
ou  ov
(5 %)
s = (i,j=12) (11.1.9)

3
2(3)
dy

This completes the discussion of Neumann boundary conditions for the momentum
equation. The continuity equation (11.1.1a) is a constraint condition for incompress-
ibility or conservation of mass and is incapable of producing the Neumann boundary
conditions, The Dirichlet (essential) boundary conditions arise from further integration
by parts of the domain integral terms of (11.1.2b). Intuitively, we identify them as

vV, =V; oOn I'p (11110)

Dirichlet boundary conditions may be implemented wherever available in addi-
tion to commonly assumed no-slip conditions along the solid walls. In principle, either
Dirichlet or Neumann boundary conditions, not both, must be specified everywhere
along the boundary surfaces for elliptic equations.

It is important to realize that the surface pressure is identified as a part of the
Neumann boundary conditions in (11.1.4). For inclined surfaces, n; # 0, n, # 0, both
components §; and S, contain the nonzero surface pressure and velocity gradients in
both directions. Since no further integration by parts can be performed on the second
term of the domain integral in (11.1.2b), the Dirichlet boundary condition does not
arise. The reason for this is that we have m = % for p;, Oth order (2m —1 = 0) for
the Neumann boundary condition and —( %)th order (m —1 = —1} for the Dirichlet
boundary condition, implying that the pressure may be specified either as Neumann
boundary conditions or as Dirichlet boundary conditions.
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In view of these basic rules, any deviation arbitrarily chosen by practitioners may
lead to incorrect solutions. Moreover, it is cautioned that any boundary nodes with-
out specification of either Dirichlet or Neumann data are automatically construed as
having enforced S,-(]) = sz) = 0, because the finite element analog of the Neumann
boundary vector in (11.1.2b) vanishes if either Dirichlet or Neumann data are not
provided.

The numerical analysis involved in incompressible flows often requires the solution
of Poisson equation for pressure in order to maintain the mass conservation and obtain
accurate solutions of momentum equations. The pressure Poisson equation is obtained
by constructing the divergence of the momentum equation. For incompressible flows,
this operation leads to

Pii +(pvijv;)i=0 (11.1.11)
The inner product of (11.1.11) with p becomes

J = /QP[PJL- +(pvijv;)ildR2 =0

or
J = /rp(p_gni + pvi jvn;)dlN — [Q (pipi+ppivi;v;)d (11.1.12)
It follows that Neumann boundary conditions are
SY = pini = 9 o5t + ?—P sin B (11.1.13a)
ax ay

89 = p(viny) ;v du cosf + v sin® |u + du cos O + v sin 6
P V=P ox ox P ay oy
(11.1.13b)

Here S represents the normal surface pressure gradients. These data should be pro-
vided along the boundaries wherever the Dirichlet boundary conditions are not avail-
able. Notice that @ vanishes if v;n; = 0 along the boundary nodes. In this case, of
course, the pressure must be specified as Dirichlet boundary conditions alone, contrary
to the case in the momentum equation, where pressure is treated as Neumann boundary
conditions.

For transient problems, the momentum equation is written as

; 0
— + —(pviv, —0;j)—pF; =0 11.1.14
Pt PVivi— o) — ek ( )
In this case, the initial conditions consist of the initial data at + = 0 along the boundaries
and the domain. For the velocity-pressure solutions of (11.1.1), the required initial
conditions are

vi(x,0)=v) inQ=QuUT (11.1.15a)
Vﬂ’li(x,', O) = V?nj onl (11.1.15b)

In addition to these initial data, the Neumann boundary conditions of (11.1.4) and
(11.1.5) at t = 0 should also be satisfied. Incompressibility conditions, v{’;(x;, 0) = 0 in
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Figure 11.1.2 Free surface flow boundary conditions with variable temperatures
as well as velocity and pressure between liquid and gas.

Q are difficult to enforce at t = 0. We require that the mass conservation be satisfied
for t > 0 through an adequate numerical control such as the pressure Poisson equation
to be discussed in Chapter 12.

The momentum equation (11.1.14), which is characterized as an elliptic-parabolic
equation, tends toward parabolic if time dependency dominates and toward elliptic
if spatial dependency dominates. Boundary conditions must be specified everywhere
along the boundaries for elliptic equations, but not specified at the outlet surface for
parabolic equations, as dicussed in Section 2.4

Boundary conditions involved in two-phase flows or free surfaces of variable den-
sities require additional information. As shown in Figure 11.1.2, the free surface is the
boundary between liquid and gas,

Y =mn(x, y.1)
Puliquid) = P(gas) — U(Rx_l + Ry_l)

Dn  om am o
Viliquid) = Vigas) = 57 = o7 + “7 + V=

Oij(liquid) = Tij(gas)
aT
Ay(liquid) = Qy(gas)» qy = _kg
where o is the surface tension, R, and R, are the curvatures,

oot
0 | am\>  [om\ |’
Rl=—1—"/1 — — !
* ox | ox +(8x)+(8y

o | om[ o\ fam\ |’
Ry == 11+ () +(2) | ¢
Y ay | oy dx ay

-




11.1 BOUNDARY AND INITIAL CONDITIONS

For simplified free-surface conditions between liquid and air, we may assume that

0°n 8%
Plliquidy = P(gas) — O (ﬁ + B—yz)

~ m
Vliquid) = o
AY ~ oT ~0
OV iquiay Y (iquid)

~

Pliguid) = Platm)

In addition, we specify the velocity, pressure, and temperature at the inlet and outlet
as well as the no-slip condition (v = 0) at the wall. More detailed treatments of boundary
conditions associated with surface tension will be given in Chapter 25, Multiphase Flows.

11.1.2 COMPRESSIBLE FLOWS

Compressible flows are characterized by additional terms for dilatation in the stress
tensor and temporal and spatial variations of density.

J 3
o7 PV + 5 (pvivi + pdij = 1ij) —pFj =0 (11.1.16a)
3
5‘% +(pvi)i =90 (11.1.16b)
with

2
Tip = (Vi j + Vi) — gMVk,kE’ij

For compressible flows, the normal surface convective stress, § (1), remains the same
as in (11.1.4), but the normal surface traction, § (2), is modified as

ou ou ou v 2(du ov
Bploomt—mt+—m+ —m— g =t n

3 3 3 3 3\ox | By
O t (=12
! v +3V +8u +8v 28u+av
—n A+ —m+ —nm+—m—=|—+—In
Haxlayz 8y18y238x ayz
(11.1.17)
Thus, equations (11.1.6)-(11.1.9) are written as follows:
For 6 = 0°
(4 u ZGV)
plo— 222
39x 390
@) _ Yo G=12) (11.1.18)
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For 6 = 180~
(4 ou 2 av)
—uf-— -2
3dx 39
(2) y }
s = ‘ (j=1,2) (11.1.19)
av N ou
H dx  dy
For 6 = 90"
(au N 'dv)
M —_— _—
Jy  odx
s = ‘ =12 11.1.20
/ 4ov 2 du G ) ( )
M3 dy 3ox
For 6 =270°
(au dv)
_I“L — —
ay  0x
@) i =1,2 11.121
/ 49y 2du =12 ( )
M35~ 36x

For compressible flows, combined solutions of the pressure Poisson equation are not
required as the enforcement of the incompressibility condition is not necessary. Thus,
the pressure will not be used as Dirichlet boundary conditions. It is still a part of the
Neumann boundary conditions as specified in (11.1.4).

Dirichlet boundary conditions and initial conditions for compressible flows are the
same as the incompressible flows. Enforcement of incompressibility conditions as initial
conditions, however, is no longer necessary.

The elliptic-parabolic natare of (11.1.14) tends toward a hyperbolic type in high-
speed flows if the viscosity effect is negligible, resulting in the Euler equation. In this
case, the outflow boundary conditions are not to be specified but, rather, should be
determined by the calculated upstream flows since the downstream effect toward up-
stream is not allowed. Details were discussed in Section 6.7 and will be covered also in
Section 13.6.6 for compressible flows.

® CONCLUDING REMARKS

In identifying the Neumann boundary conditions, the conservation form of the mo-
mentum equations is used, in general, where convective terms as well as diffusion terms
are integrated by parts. If the convective terms are not written in conservation form,
however, no integration by parts is performed for the convective terms. In this case,
the Neumann boundary conditions do not arise from the convective terms. This is
the case for incompressible flows. In contrast, the conservation form is more conve-
nient for compressible flows, and integration by parts for the convective term is carried
out, resulting in the Neumann boundary conditions for compressible flows. This rule
does not apply if a special test function (i.e., numerical diffusion test function) is used
to induce artificial dissipation for the convective term as discussed in Section 11.3.
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Specification of boundary conditions required for the Navier-Stokes system of equa-
tions is considerably more complicated, and will be discussed in Chapter 13.

11.2 GENERALIZED GALERKIN METHODS AND TAYLOR-GALERKIN METHODS
11.2.1 LINEARIZED BURGERS’ EQUATIONS

To demonstrate the basic concept of generalized Galerkin methods (GGM), we consider

the linearized Burgers’ equations in the form,
v | _ :
Ri = G_‘; + ViVij — VYV — ﬁ =0 (l = 1, 2, 3) (11'2'1)

where ¥, is temporarily held constant in the time-marching steps and/or iteration cy-
cles but updated in the following steps and/or iteration cycles. The standard finite ele-
ment formulation of (11.2.1) with DST approximations was introduced as the GGM in
Section 10.2. This requires the successive inner products of the form

(W(E), E) = (W(E). [Walx), R,-]):fgvi/(g)[fg W, (x)R; dﬂ}dg =0 (11.2.2)

in which W,(x) and vi/(g) denote the spatial and temporal test functions, respectively.
Furthermore, the trial functions for nodal values of variables are related as follows:

Vi = ®olXi)Vai (11.2.3)
Voi = @)V (11.2.4)

where ®.(x) and &,,(&) denote spatial and temporal trial functions, respectively,
£ = t/At, a = global spatial nodes, and m = local temporal station (n + 1, n, n — 1, etc.).

Setting the spatial test function W, equal to the spatial trial function ¢, and inte-
grating (11.2.2) by parts in the spatial domain, we obtain

f W () AapVpi + (Bog + Kap)Vai — Fui — GoildE =0 (11.2.5)
£

with

AU‘B :/S:zq)a(bﬁdﬂ, BU‘B :L¢Q¢B,/v1d9

KOCB :fvd)u]CDBj d2 Gai =[v$a$BngBi Fm' :[ q)aq)BdeBl
Q r Q

Notice here that all matrices are the same as in Chapter 10 except for B,g, which is
called the convection matrix. Choosing a linear variation of a variable 1n the temporal
domain

Voi = (1 = €)vg + £V
we obtain from (11.2.5)

[Aag + nAH(Byg + Kag)]vgfl = [Agg — At(1 — M) (Byg + Kop)vg; + At(Fui + Gui)
(11.2.6)
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where the temporal parameter n1s defined as

1 -~
f Wie)E dt
n= 0

) fol W(e) de

For W(g) =8¢ —1/2)or vi/(g) = 1 with 0 < £ < 1, the temporal parameter becomes
n = 1/2. Thus,

At At
{AQB + = (Bog + Kaﬁ)]ngrl = [Aﬂs — 5 (B + Kaﬁ)]"gi + A1(Foi + Gui)
(11.2.7)
We may rearrange (11.2.7) in the form

B — (B + Kag) Vi + Fui + Gai (11.2.8)

This is identical to the special case of the Taylor-Galerkin Methods (TGM) reported
by Donea [1984]. If ¥; in (11.2.1) is no longer held constant, then the temporal trial
functions ®.(£) or temporal test functions W(g), or both, may be chosen as higher
order polynomials, which would introduce additional temporal stations as shown in
Section 10.2. Note that the scheme as given by (11.2.8) is implicit and resembles the
Crank-Nicholson scheme. In contrast to (11.2.7) in which n=1/2 1s fixed, we may
choose 0 < m < 1. Such choice is general and the expression given by (11.2.6) is known
as the generalized Galerkin method (GGM) for the linearized convection-diffusion
equation.

To prove that (11.2.8) is the same as the TGM of Donea [1984], we proceed as
follows: Expanding v{’“ in Taylor series about v}', we write

Ayl 2 82 n AI3 a3.n

ALV, Araav; + Azt o+ datv3, +O(At%) (112.9)
Taking a time derivative of (11.2.1) for the time step n and substituting the result into
the above leads to

v _ 3 N 3° - At { _ B N 32\ avT
AL = -V, — 4V Vig =V, — +v
At Pox;  axjax; )t 2 Tox;  dx;ox;) ot

+A12 __ @ g 3 ! a4 avf+f
6 ! "ax,axk faxjaxkaxk v 0x;0x;0x,0x,/ ot !
(11.2.10a)
with
v VAR
ar At

Although the third order time derivative in (11.2.9) may be useful for the convection
dominated flows without the viscous terms, we shall choose to neglect it for our purpose
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here to establish the analogy between GGM and TGM. Rearranging (11.2.10a) leads

to
pA o8 32 vy o0 32 oy
- ~Vi— +v =|-V,— +v v; ;
2 "dx]- 0x;0x; At /ax,- ox;ox; ) ! '

(11.2.10b)
The Galerkin finite element analog for (11.2.10b) yields
At d 92 g vy — v
Lo (o e 205
Q 2 ax]' ax]' ax]‘ At
+ |V i ——82 Gpgvg, — @ d2=10 (11.2.10¢)
V.— J— v . — H — vkt C
/ dx; ax;x; BVp: p Joi
Integrating the above equation by parts, we obtain the result identical to (11.2.8):
I At 1(var' = vt
A + 7(18@B + Kap) L&_N_Bl) = —(Bg + Kop) v + Fui + G (11.2.11a)

which can then be rearranged in the form shown in (11.2.7),

[ At ] o At n
AO‘B + 7(3043 + KaB) B,Jr] = AaB - T(Baﬁ + K(IB) VBE + A[(Fui + Gai)

(112.11b)

It has been shown that the GGM approach with the temporal test function given by
W(g) =3(&—1/2)or W(g) = lisidentical to TGM proposed by Donea [1984] without
the effect of the third order time derivative in the Taylor series expansion. This analogy
of GGM to TGM does not hold true for the nonlinear Burgers’ equations (v j #V;)as
will be demonstrated in Section 11.2.5 in which an explicit numerical diffusion arises in
TGM, contributing to both stability and accuracy for the solution of nonlinear equations
in general. The presence of the third order time derivative in the Taylor series expansion
as originally proposed by Donea [1984] will be discussed in Section 11.2.3 in relation
with the Euler method, leap-frog method, and Crank-Nicolson method.

Numerical Diffusion

In general, for convection dominated flows, numerical diffusion is required to sta-
bilize the solution process. To see whether the algorithm of GGM or TGM as given
by (11.2.8) or (11.2.11a) does provide such a numerical diffusion, we may trace from
(11.2.11b) back to (11.2.10a) with A¢? terms neglected.

/ CDa(dVl + ViV =V — f[-)dQ = —f EVJ-CIDQ.I(V;(V,-J( — Wik — fi)dQ
in which the difference equation has been converted to the differential equation,
with boundary integrals neglected upon integration by parts in the right-hand side.
Note also that integration by parts was performed only for the convective terms. The
viscous terms and body forces on the right-hand side may be neglected. The GGM
formulation can then be applied to the left-hand side. It is clear that the first term on
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the right-hand side,
At
CGB 2/ Tvkviq)a_k@&jdﬂ = f ’U_ijDa.kCDB‘de (112123.)
Q Q

represents the numerical diffusion matrix with vy; = —A-zlvk'v“ ; being the artificial viscosity
for convection. The numerical diffusion matrix Cyg should be added to the convection
matrix B,g in (11.2.8) particularly for high-speed convection-dominated flows.

BQB 2/ CI)(,CDB‘]‘deQ—}—‘/ ii_k]‘cba‘kcbg_]'dg (11212b)

We shall further discuss this issue for the nonlinear Burgers’ equations in Section 11.2.5.
Note that a variety of approximations in GGM for the temporal test function W(E)
and the temporal trial functions in (11.2.4) may lead to different forms of numerical
diffusion. Similar consequences arise for TGM if the third order time derivative in the
Taylor series expansion in (11.2.9) is retained.

Remarks: In general, we may consider TGM to be a special case of GGM with
n = 1/2 being chosen in (11.2.6). This is not true in some special cases of TGM as
derived by Donea [1984].

11.22 TWO-STEP EXPLICIT SCHEME

Nonlinear problems can be solved explicitly by splitting the equation into two parts
within a time step. Equation (11.2.7) or (11.2.8) may be rewritten in the form

Step 1
A Xy = —(Bag + Kap)Viy; + Fu + Gui (11.2.13a)
Step 2
Al
Ap X = —5 (Bus + Kog) Xy, (11.2.13b)
where
(1) (2) (1)
Avg; AV Avy,,
WO 2T 0 TR TR (11.2.14a,b)
: At B At

Note that substitution of (11.2.14) into (11.2.13b) recovers (11.2.11) if the following
assumption is made upon convergence:

AvD Al = v (11.2.15)

A glance at (11.2.13a) and (11.2.13b) suggests that the solution of (11.2. 13a) for
X, (™ (Step 1) can be substituted into the right-hand side of (11.2.13b) to determine X! ;
(Step 2). At convergence, it is seen that

(2) (1 +1 +1

—
At At At At
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and that (11.2.11b) arises by combining (11.2.13a) with (11.2.13b). This process is known
as the two-step scheme, similar to the Lax-Wendroff scheme, contributing to an increase
in accuracy and/or convergence.

It follows from (11.2.14) and (11.2.15) that the unknowns Vgi“ can be computed
from

it = v+ ar( X3P+ X)) (11.2.16)
which will then be substituted back into Step 1 (11.2.13a) for the next time step, thus
continuously marching in time until steady-state is reached.

In (11.2.13a) and (11.2.13b) the inverse of the mass matrix Ay would be simple if
we chose to use the so-called lumped mass matrix as follows: Let A ' be the lumped
mass matrix, A  the consistent mass matrix as defined by A, in (11 2 13).

The lumped mass matrix is diagonal with entries from the trlbutary areas (sum of
the row contributions). For example, the lumped mass matrix, AN 24 for a triangular
element may be obtained from the consistent mass matrix, Agvcﬁ),l as follows:

2 11
o A
A§W$4=E 121
11 2
(L)
n 0 0
L L (L)
ASVM_Z Mt = AN =1 0 A0 (11.2.17)
(L)
0 0 W
with
(L) (©) . A€ | 40 _4A
m = )+ 12)+ 13) ~ 1o
(L) (©) ) _ 44
A(zz) A(21)+A(22)+ 3= 1o

(€) (©) © _
‘4(%3) - A(%l) + 32) + 33y ﬁ
Notice here that the index within the parentheses is not associated with summing. Thus
we obtain

A1 00
AV = 31010
00 1

Write (11.2.13a) or (11.2.13b) in the form
A Vo = Wy
or

(A()+ A(L) A(a[[‘;)))/[ﬂi = W,
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which may be rewritten as
(L) (C) (L)
AU‘B YBi = Wai — AU‘B YBE + AO‘B YBi
Let the left-hand side and the right-hand side be the r + 1 iterative cycle and the »
iterative cycle, respectively:

ADAYI =W - ASY (11.2.18)

where
r+1 1
A YBi+ = Y|3r1'+ — Yé’i

The iterations implied by (11.2.18) may be applied to Step 1 (11.2.13a) and then to
Step 2 (11.2.13b) until cach step acquires a satisfactory convergence. It has been shown
that, in many instances, the lumped mass approach often leads to excellent results.

For two-dimensional problems, the A(,aw matrix must be expanded so that both
x- and y-direction components of v; can be accommodated. As noted earlier, this may
be achieved by means of the Kronecker delta. This will expand (11.2.18) into a 6 x 6
matrix for triangular elements and an 8 x 8 matrix for quadrilateral elements when
coupled with Aug.

To transform the generalized finite element equations given by (11.2.7) to the two-
step solution scheme, we may establish the following procedure. Consider the matrix
form of (11.2.7) written as

Dvl = Ev" + AtH (11.2.19)
where
D=A+B+C, E=A-B-C (11.2.20)

(a) Rearrange (11.2.19) in the form

n+l _ on n

DV_-N—V _ F% +H (11.2.21)
with F = E— D
(b) Define

AV — AvD =yl (11.2.22)
AvD

X = ZI (11.2.23a)
Av@ _ Ay(D

X® = JTV— (11.2.23b)

(c) Write Step 1
Ax(h — F% L H (11.2.24)

(d) Write Step 2
AXY = (A- D)X (11.2.25)



11.2 GENERALIZED GALERKIN METHODS AND TAYLOR-GALERKIN METHODS

It can be shown that substitution of (11.2.24) into (11.2.25) together with (11.2.22)
and (11.2.23) recovers (11.2.21) and subsequently (11.2.19).
If quadratic approximations are used for the temporal domain, then we write

Dv"™ = Ev" + GV + AtH (11.2.26)

The two-step scheme becomes

Step 1 Gy
v v
AXW = Fo+—F—+H (11.2.27)
Step 2
AX? = (A—- D)xD (11.2.28)

The data for Gv*~' are saved from the previous time station and used as additional
source terms. A similar approach can be used for all higher approximations which will
contain the terms of v'=2, v" 3 etc.

If f; is time dependent, and if ¥; in (11.2.1) is treated as a variable, and not held
constant even during the discrete time step, then the second derivative in the Taylor
series expansion would carry additional terms. In this case, V; on the left-hand side of
(11.2.10b) becomes v, and v; on the right-hand side of (11.2.10b) takes the form with

a fractional step (i.e., n + 1/2),

_ n+l n o ALV
V/'—Vj : :Vj +7E (11229)
and
niy _ oen DL
fi—1f "=+ EEET) (11.2.30)
which would require the three-step solution scheme.
Step 1
1
A Xy = ~5(Bog + Kap)V5; + Fai + G (11.2.31)
with
S
XB(?) — B Bi
At
Step 2
! ngd
Ap Xy = —BopVy * — KagVii + Fo'? + G (11.2.32)
Step3

1
A X2 = ~5 (Bog + Kap) M) (11.2.33)
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The GGM analog for the three-step scheme requires the use of quadratic functions
in the temporal trial functions ®,,, which will involve A¢? and three time steps. including
a fractional time step.

11.2.3 RELATIONSHIP BETWEEN FEM AND FDM

It is interesting to note that the GGM formulations lead to finite difference results such
as Euler Method, Leapfrog Method, Crank-Nicolson Method, etc. We will examine
these results below.

Euler Method
Consider the convection equation

v _

% Y Vv =0 (11.2.34)
Taking a time derivative of (11.2.34) gives

v,  _ [av v _ _
A further differentiation of (11.2.35) yields

3, av;
— = ViV | — = 11.2.
a3 ViV ( o )Akj 0 ( 36)

Expanding v/*' in Taylor series about v! to the third order derivative, we obtain

vl AL V! AP BV

n+1 n i
Lyt At 11.2.37
e P TR TERE TR % (112.37)
Rearranging (11.2.37) to determine the first derivative of v}’ gives
n+1 n a1 N2, 1 2 a3,n
v, =, av; At 9°V] At2 07V
L= L —— : 11.2.38
At o T2 a2 T 6 o ( )
Substituting (11.2.34) through (11.2.36) into (11.2.38) leads to
vty _ At__ AP _ _ (B!
-IT = -——V]Vlnj + —2—V]‘VkVi_kj + TVij(ﬁ) . (11239)
with
vy vt —yn
3t At
Equation (11.2.39) may be written as
AR_ _3r O\ Avi A
(1 s V’V"ax,a.xk) AT —V;vi i+ TVijV;kj (11.2.40)
where Av/T! = vt v

i i
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We construct the Galerkin finite element integral for (11.2.40) in the form

At At

NG Avgt!
Ay K,
( BT B) At

where
AaB :/q)achdQ’ Bas=/q’a¢’l3.jvid97
Q Q
KULB Z/Vjvkq)mjcbﬁ,kdgzv
Q

* *
r

It should be noted that (11.2.41) is equivalent to the Generalized Galerkin finite element
equations,

At? . A At?
(A“B + ?Kag) VB;H = (AOLB - AthB - —3~KQB) Vgi —+ TGM‘ (11242)
The two-step solution scheme for (11.2.41) becomes
Ar? At
AO‘B XB(11) = _(BaB + —2_K0‘B) Vlgi -+ —Z—Gm' (11243)
2 At 1
Ag X)) = ——— Kop X3/’ (11.2.44)

with X{; and X;;’ defined as in (11.2.14). Notice that, in dealing with the advection
equation with diffusion, we have included the third order time derivative [see (11.2.37)]
which resulted in the numerical (artificial) diffusion characterized by the second order
spatial derivative in (11.2.40) or the matrix K, in (11.2.41). The presence of these terms
is responsible for the stability of numerical solution.

Leapfrog Method
The leapfrog method is obtained by writing the Taylor series of v ! about vl to the
third order,
VIl APV AP 3V
n—1 i i [
=l =y At - 11.2.45
Vi Vi ot + 2! 9r? 3! a3 ( )

Subtracting (11.2.45) from (11.2.37) and rearranging, we obtain

Af? 82\ Ayt
1- ViV L = Vv, 11.2.46
( 6 "ax,axk) 2At Vi ( )
with Ayt = vt —v2=1 The finite element analog of (11.2.46) becomes
Ar? Avg!!
Ag+ —Kig | —— = —BgVi 11.2.47

The corresponding Generalized Galerkin finite element equations, neglecting the
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Neumann boundary conditions, are given by

Afz n+l n Atz n-1
AO‘B + ——6—KaB VBE = —ZAIBOLBVBL' + AaB + ? af VBi (11248)

The two-step solution scheme consists of

1 (n .

S Aap Xy, = ~A1 BV, (11.2.49)
At?

A Xg) =~ Kop X (11.2.50)

n

By definition for the leapfrog method, the variables vBi+1 are calculated as

n+1 n—1 (1) (2)
v =V + 2At(XBi + X ) (11.2.51)
Thus, initially both v”, and v/, are assumed to be known and, for the next time step,
v/ becomes v/ .

The leapfrog scheme may be revised to involve vy, instead of vl (11.2.51) in the
incremental form. This will alter the process as follows:

At Avit NG
Au Ka B = —ZAtBa - Aa - K(X o
( Bt 6 B) At At l:( B B 6 B) Vi

Ar? el
-+ AU‘B + TK(XB VBi (11252)
The two-step solution scheme is now in the form
2 2
(1 1 At " At ol
AO‘BXBJ) = E[(_ZAIBHB — AQB - _g_KaB) Vai + (A‘XB + ?‘Ka[ﬁ Vi
(11.2.53)
@ _ _Ar M
A Xi] = ———Kup Xgi (11.2.54)
This will then allow the variables v to be calculated as
virb = v an( X+ xP) (11.2.55)

Crank-Nicolson Method
The Crank-Nicolson method is obtained by writing the Taylor series of vi about
v"*! to the third order:

gVl A2 92 AP @It

I n+l i
f=v' — At 11.2.56
M TR TR TE 3t o ( )
Making use of the relation
1/ovih  avry v =)
= S = ’ 11.2.57
2( ot ot ) At ( )
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and in view of (11.2.35) and (11.2.36), and subtracting (11.2.56) from (11.2.37), we
arrive at

. Atz_ 3 82 AV:H—I Vj aV;n . aV?-H
6 *ax;ox ) At 2 \ox; T ax;
At o?vy vt
vy - : 11.2.58
t 4 ViV (ax,-axk 00X ( )
AaB — Tz_KaB + _2—"BOLB VBi = AaB + 1—2KaB - TBOLB VB[ (11259)

This is the implicit Crank-Nicolson scheme. However, we may convert (11.2.59) into a
two-step explicit scheme as follows:

(a) Rewrite the finite element equation in the time-step difference form

Ar? At 0\ Avg!
( A= 2Ky 2 BaB) AB; — BV, (11.2.60)
(b) The two-step explicit form is written using the procedure described earlier,
Aug Xs)) = —BogVl, (11.2.61)
2 Ar? At 1
A XS = (iKQB - —Z—BaB)Xéi) (11.2.62)

Remarks: Appropriate choices of the finite element test functions for W, &, &,
and W(£) enable the finite element analogs of Euler (11.2.42), leapfrog (11.2.48), and
Crank-Nicolson (11.2.59) to be generated without the Taylor series expansion. Other
forms of finite difference schemes may be generated by adding discontinuous functions
to Wy, which we shall elaborate in Section 11.3.

11.2.4 CONVERSION OF IMPLICIT SCHEME INTO EXPLICIT SCHEME

It follows from the approaches discussed in previous sections for the explicit schemes
that it is possible to convert all implicit schemes into explicit schemes. Consider the
generalized temporal-spatial finite element equations written in matrix form.

(A+ BV = (A+ OV + (A+ DV + (A+ EW'" 2+ ... —AtH  (11.2.63)

where B=B+ B+ -, C=Ci+C+ . D=Di+ Dy +-. - E=E + E+---,
ete. Note that various forms of (11.2.63) result from unlimited choices of functions in
&y, Dy, and W(&) in Section 11.2.

The conversion process consists of the following steps:

(a) Write (11.2.63) in an incremental form,

Avn—H Vn Vn—l
A+ B =[(A+C) — (A+ B)|—— + (A+ D
(A+ B =[(A+ O = (A+ B L +(A+ D)
n—2
(A4 E)VAr bl (11.2.64)

365
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where
Avn+1 — VrH—l —y (11265)
(b) Step 1 is constructed by rewriting (11.2.64) with all terms other than the mass

matrix A removed from the left-hand side of (11.2.64) and designating Av"*!
as Av{D called the first increment,

n n—1
AXD = [(A+C) = (A+ Bl +(A+ D)+ —H  (11.2.66)
where
AvD
1 _
X At

(c) Step 2 is constructed by setting the product of the mass matrix and the second
increment X@, which is equated to the variant of the first increment,

AX? = [A- (A+ B)xWD (11.2.67)
where

A 1l AvD

x® =2 M (11.2.68)
At

(d) The variable v**! is given by
vt = v Ar(xW 4+ X (11.2.69)
A glance at (11.2.69) reveals that, for a steady-state condition, t = 0o, and v = vl =

v =yl =v"2 =... we obtain

(B+C+D+E+--yw==H (11.2.70)

Thus, it is expected that a steady-state solution would result as recursive calculations
are carried out consecutively.

11.2.5 TAYLOR-GALERKIN METHODS FOR NONLINEAR BURGERS' EQUATIONS

Let us consider the nonlinear Burgers’ equations of the form

8V,‘
E +Vivij — VvV = f,' (11.2.71)

The Taylor series expansion of (11.2.71) as given in (11.2.9) without the third order
derivative term becomes

. LA
AViJrl = —At(Vng_j — VVijj — f,) -+ Tl:vka(vjvi.j — VvV — f,)

3° afi 1"
+ Vi (VVik — Wik — fi) — v*axjax, (VkVik — vVikk — [i) + a—tl]
(11.2.72)
from which the original differential equation can be recovered in the form,
avf

E‘ -I'_Vjvi.j — VVi./j — fi = Sj (11273)
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where

At 0
S! = —Z—[Vka—Xk(VjV,‘J‘ — UV,'.jj — fz):' (11274)
with higher order derivative terms and products of the gradients in (11.2.72) being
neglected. It is clear that the right-hand side of (11.2.74) appears as numerical diffusion.
Applying the Galerkin integral to the right-hand side of (11.2.74) and integrating
by parts, we obtain

At
/;ZCI)&S[' dQ = —7 »/S‘ZVijCDu’kCDB'deVBi (11275)

where all terms other than the convective terms are negligible in practical applications.
Thus, the numerical diffusion matrix is identified as

Cop = f Vi Dok Dp. A2 (11.2.76)
Q

with the numerical viscosity,

At
Vi = TV/(V]' (11.2.77)
It is interesting to note that, using an entirely different approach, the numerical
diffusion similar to (11.2.76) and (11.2.77) arises in the generalized Petrov-Galerkin
(GPG) methods to be presented in Sections 11.3 and 11.4. More general treatments of
TGM will be covered in Section 13.2.

11.3 NUMERICAL DIFFUSION TEST FUNCTIONS

In GGM described in Section 11.2, various degrees of polynomials (linear, quadratic,
cubic, etc.) may be adopted for desired accuracy of solution. However, in convection-
dominated problems, an adequate amount of numerical diffusion or artificial viscosity
is required for numerical stability. To this end, the so-called streamline-upwind Petrov-
Galerkin (SUPG) method [Heinrich et al., 1977; Hughes and Brooks, 1982] has been
successfully used. In this case, the local finite element test functions consist of standard
Galerkin test functions plus numerical diffusion test functions. There are many forms
of numerical diffusion test functions as reported by Hughes and his co-workers during
the 1980s. A similar approach is referred to as the streamline diffusion method (SDM)
by Johnson [1987].

Computational stability is provided effectively through various forms of SUPG,
SDM, or other similar strategies. All of these approaches are nonstandard Galerkin
methods and, for simplicity, they may be combined into a single name “General-
ized Petrov-Galerkin (GPG) methods. The concept of GPG for the one-dimensional
Burgers’ equation will be introduced first in order to identify a one-dimensional numer-
ical diffusion test function which provides the numerical stability, followed by multi-
dimensional numerical diffusion test functions representing the streamline diffusion
and discontinuity-capturing schemes.

367
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11.3.1 DERIVATION OF NUMERICAL DIFFUSION TEST FUNCTIONS

The concept of streamline diffusion began with the backward (often called upwinding)
finite difference scheme for the convection-diffusion equation first given by Spalding
[1972]. The idea is to introduce the numerical diffusion in the direction of flow or along
the streamline parallel to the velocity in order to obtain stable solutions. In the following,
we use the convection-diffusion equation to demonstrate the concept of streamline
upwinding or streamline diffusion. Our objective here is to prove that numerical stability
can be achieved by test functions written in the form,

W = ol +wl (11.3.1)

where W}S ° represents the generalized Petrov-Galerkin test functions which are the sum
of the standard Galerkin test function CDSV and the numerical diffusion test function \If( %
The numerical diffusion test function \Iff(v) in (11.3.1) is intended for adding numerical
diffusion practiced in the finite difference literature. However, in the sequel, it will
be shown that the derivation of numerical diffusion test functions involves significant
physical aspects of convection-dominated flows.

To elucidate the argument involved in this approach, we look at the unsteady con-
vection equation of the form

ou u

otaz =0 (11.3.2)

Substituting (11.3.2) into Taylor series of the type (11.2.9), we obtain

Ju" At2 82 n
ut =u" 4 At(—a BL; ) += (az 8)1:2 ) (11.3.3)

If u™! = u" at steady-state, we may set aAr = CAx, where C is the nondimensional
artificial viscosity (equal to Courant number for a = u, or C = uAt/Ax), and rewrite
(11.3.3) in the form

A 2
(8” ¢ xa_”):o (11.3.4)

0x 2 9x?

in which the second term of the left-hand side of (11.3.4) represents the numerical
diffusion, equivalent to the artificial viscosity. Denoting o« = /2 and h = Ax as the
nondimensional numerical diffusion parameter and the mesh parameter, respectively,
we may construct the following inner product:

OEL *u
o = —ahe= ) dx =0 11.3.
f e (ax i )dx (11.3.5)

Integrating (11.3.5) by parts, we obtain

{e)
. by, 0 * du
/(Cb( ) 4 h ) —udx = d)Naaha—
X

ax dx

where the integral on the left-hand side is known as the Petrov-Galerkin integral. For
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, X
W, =" +a
h

\yié’l:a t

< >l >

Figure 11.3.1 Linear generalized test functions for one-dimensional element W(e)
with kllN) ah(‘)(bgv /dx) constant within the element, discontinuous at boundaries.

Dirichlet problems (DN = 0, we have

fw’f)( ) dx =0 (11.3.6)

with
W = o) 4wl (11.3.7)
&y _ (1 _* X
o _(1 2 h) (11.3.8)
© a0’
N o Ox (11.3.9)

The foregoing process indicates that the numerical diffusion may be applied to the
convective term in (11.3.2) through (11.3.6), with the explicit form given by (11.3.9)
representing the numerical diffusion test function. This is a variational weak form as
constructed by the inner product of the numerical diffusion test function and the con-
vection term.

Substituting (11.3.8) into (11.3.9), we arrive at

v =[-a o (11.3.10)

which indicates that the numerical test function is constant within an element, equal
to one-half of the Courant number, but discontinuous at boundaries, as shown in
Figure 11.3.1. It will be shown that one-dimensional numerical diffusion test functions
given in (11.3.9) arise from the two-dimensional numerical diffusion test functions to
be discussed in Section 11.3.2.

11.3.2 STABILITY AND ACCURACY OF NUMERICAL DIFFUSION TEST FUNCTIONS

Let us examine the convection-diffusion equation,

S 9°
Rﬁ-a—; —0 (11.3.11)
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with R being the Reynolds number (per unit length) R = pu/u = u/d, where d is the
kinematic viscosity (but will be referred to as diffusivity in the following). Notice that
R = pcyu/kisregarded as the Peclet number if  is taken as temperature. Thend = k/pc,,
becomes the thermal diffusivity. We write the local element Petrov-Galerkin integral
for (11.3.11) as

h 2 2
du  o°u L0 0°u
W(e)(R————— d =/ o9 LWV (REE _ 22 ) 4y = 11.3.12
j; ox o) 0 ( * N) ox a2 ) Y ( )

Apply integration by parts only to the product with the standard Galerkin test function
<I>(}f,) which will then produce a boundary term, whereas the integration of the product

term with the numerical diffusion test function tIJSS) is to be performed only over the

interior domain, not involving the boundaries.

fh 5 d)(e)aq>§\?+ahaq>§3) aoly) +a¢§3)a¢§\;)_ahacb§3)azcb§§) del o
0 N ox x  Ox dx  Ox dx x> M

_c’g(e)a_uh
N8x0

(11.3.13a)

If linear trial functions are used, then the second derivative term vanishes, so that we
have

(By + Col) ) + K uly) = GY (11.3.13b)
where
h A
By, = f Ra
0
is the standard convection matrix and

h {e) (¢)
Aol gl
), = fo Roh M dx

)3d

dx  dx

represents the numerical diffusion matrix 1mp1y1ng the numerical diffusion arising from
the convection term, The last integral term Kz(v 1 18 identified as the physical diffusion
matrix.

n (e) (e)
NM 0 dx ox

Evaluating these integrals, we obtain

() (€) _E —14+2a 1-2«
BNMJFCNM_z[—l—za 1+ 2a

O I |
ey _ 1L
Consider a two-element system with nodes ati — 1,/, and i 4+ 1 and the global form
of (11.3.13). Expanding the global equation corresponding to the node ati and assuming
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that the Neumann boundary conditions are unspecified ( %%) = 0), we obtain
R R
l:l —+ E(ZOL + ].)il Ui_| — (2 + 2ROL) u; + |:1 + 5(2& — 1):| U1 = 0 (11314)

where R is the local Reynolds number, R = Rh. Equation (11.3.14) represents the
forward, central, and backward finite difference equations for @ = —1/2, a =0, and
a = 1/2, respectively. The backward difference form (a = 1/2) given by

AU — Wi Wiy — 2U; + Ui
ot . _0 (11.3.15a)

can be modified by transforming the convection term into the central difference form
to identify the numerical diffusion with the coefficient Rh/2,

Af Uitl — Ui Rh Uiy1 — 2U; + Ui
— |- = +1 =0 11.3.15
Reg) = (5 ) (=) (13150

This is equivalent to the differential equation

du %u 9%u
o %9e T ae =0 (11.3.16)
with & = Rh/2 being the coefficient of numerical viscosity and &(92u/dx*) representing
the effect of numerical diffusion. We say that the effect of numerical diffusion is built into
this equation if the backward difference is used. We may consider & as being equivalent
to the artificial viscosity.
To obtain the condition for stability (11.3.14), we proceed as follows: Let G = 1 4+ Ra
and H = R/2. Rewrite (11.3.14) in the form

(G- Huip —2Gu; +(G+ Hu; 1 =0 (11.3.17)
where we assume the relations at the nodesi 4+ 1,i,andi — 1 as
u; = cd’, Ui = cd' Ui =cd'™! (11.3.18a,b,c)

Substituting the above into (11.3.17) yields
(G- H) ¢ 26 + (G+ H)d'™' =0

For i =1, we obtain the quadratic equation
(G- H)$* -2Go+(G+ H)=0

Solving for &, we arrive at two values of ¢

1
b=yG+H
G- H

These results call for two constants in (11.3.18).
Now we revise the relation in (11.3.18a) in the form

i

R
i 1+ =QCa+1)

G+ H
+ ):CIJFQ 2 (11.3.19)

u; :C1+C2(G_H

1-|—§'(20£—1)
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For stability, the denominator of the ¢, term must be positive,

G-H=>0
or
R
1+ 5(20{ —1)>0 (11.3.20a)
which provides the stability criteria
a=0 if R<?2
1 11.3.20b,c
a> - — 1 if R>12 ( )
2 R
It is clear that the forward difference with o = —1/2 (11.3.20a) becomes uncon-

ditionally unstable for R > 1, whereas the central difference (o = 0) is conditionally
stable and the backward difference (a = 1/2) provides an unconditional stability. For
accuracy, we set the exact solution as

u=2caC +czeRx

which, for x = Ai, becomes
u, =c + CzeRi (11321)
Setting (11.3.21) equal to (11.3.19), we obtain the relationship

1-|—-§(2a+1)

— eRi

R
1+ 52 —1)

Taking a natural logarithm of the above leads to

H R
l”(G+ = 2coth™! —(—;— —2coth ! 11 Ra =R
G- H H R/2

from which we obtain

R 2
20 =coth| = | — = 11.3.22
o =Co (2) R ( )
with
1 1
— (= _7§ 11.3.
I 2C 2a (11.3.23)

This is the criterion for accuracy. Here, the one-dimensional numerical diffusion pa-
rameter o, which assures the accuracy, is found to be a function of the local Reynolds
number. It should be noted that the value of « is one-half of that in Heinrich et al. [1977].
and & = C, called the effective numerical diffusion parameter, is indeed the Courant
number.

Substituting (11.3.23) into (11.3.22) leads to

1
o =cothH — — 11.3.24
a = Co 7 ( )



11.3 NUMERICAL DIFFUSION TEST FUNCTIONS 373

—- Doubly asymptotic (11.3.25)

----- Optimal (11.3.24)

T T T T

0 5 10 15 20 25
H

Figure 11.3.2 Effective numerical diffusivity a.

It can be shown that, expanding coth H in infinite series and retaining terms of fourth
order accuracy in H (doubly asymptotic approximation) results in

H/3, if-3<H<3 (11.3.25a)
sgn H, if |H| >3 (11.3.25b)

The values of & determined by (11.3.20), (11.3.24), and (11.3.25) are referred to as
the critical value, optimal value, and higher order value, respectively (Figure 11.3.2)
[Heinrich et al., 1977; Brooks and Hughes, 1982]. It is seen that the doubly asymptotic
approximation (11.3.25) is the simpler and practical approach.

It follows from these observations that, for two-dimensional isoparametric elements,
the numerical diffusion parameters o¢ and o, are defined as (Figure 11.3.3)

1

=]
Il

o

oy = -jag (11326&)
1_
o = 5, (11.3.26b)

with the two-dimensional effective numerical diffusion parameters, a; and &y, defined
as

ag = coth (%) — % (11.3.27a)
oy, = coth (—Izﬂ) — é (11.3.27b)

where the local Reynolds numbers in the & and r directions are of the form
_ Vel _ Vg
R'ﬁ - d ’ Rﬂ - d
For multidimensional convection-dominated problems, the directional properties of
velocity are expected to play a key role. The numerical diffusion must be provided in
the direction of flow or along the streamlines parallel to the velocity in both steady and
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Figure 11.3.3 Four node isoparametric element; e; and e, are the unit vec-
tors along the & and m axes, respectively.

time-dependent problems as well. First of all, the gradient of the standard test function
in (11.3.9) is of a vector quantity. This will require that the dot product of the gradient of
the standard test function CDSS) with another vector quantity such as the velocity vector
along the streamlines be formed such that a scalar function arises at each local node N,

v.vel) =v,el) (i=12) (11.3.28)

Thus, the quantity ak in (11.3.9) for the one-dimensional case must be altered to ac-
commodate the appropriate dimensional properties in (11.3.28) which call for a scalar,
say 7, such that

W =1y 0l (11.3.29)

with 7 being the numerical diffusion factor having dimensions of time (often called the
intrinsic time scale),

1 1 1
T 2(“& £Ve + oty Vy)/ 4(0‘E Ve + Qyfigvg)/S m(aihﬁvi + QnfinVy)/
(11.3.30)

where S = v-v,and & = coth(R/2) — 2/R;, etc. The coefficient 1/4/16 for the numer-
ical diffusion factor 7 in (11.3.30) disagrees with an arbitrary value of 1/v/15 adopted
by Raymond and Garder [1976], and subsequently Brooks and Hughes [1982] as deter-
mined from the numerical experimentation for unsteady flows. The derivation demon-
strated here, however, is based on the definition of Courant number and the criterion
for accuracy which leads to 1/+/16 instead of 1/v/15. For the purpose of generality, the
solution schemes employing the numerical diffusion test function given by (11.3.29)
are termed “generalized Petrov-Galerkin (GPG)” instead of SUPG. The unfortunate
choice of the term “SUPG™ for various reasons was discussed in Hughes [1987]. The
SUPG methods as referred to today imply far beyond the classical upwind methods
[Spalding, 1972] or classical Petrov-Galerkin methods [Mikhlin, 1964] so that more
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general identification appears to be in order. Thus, it is suggested that the term “gener-
alized Petrov-Galerkin (GPG)” may be a reasonable compromise.

For two-dimensional elements with isoparametric coordinates (Figure 11.3.3), we
express the velocity components as

Ve =V-e, V= V- €y

where the isoparametric unit vectors e; and e, are given by

dx 0dy
1 Bx,-, 1 8)(5. @ g

e — ——1;, e, = ——1;, J =
VAT R dx  dy
on  dn

It follows from (11.3.27) that the two-dimensional numerical diffusion test function
reduces to that of one dimension given by (11.3.9):

() ()
W = rvi0f), = (O‘M—’?‘)uajx"’ = ahag)xN (11.3.31)
which establishes the complete link between the one- and two-dimensional aspects of
the numerical diffusion test functions. It is interesting to note that, in due course of
derivation of the one-dimensional numerical diffusion test function (11.3.9), the notion
of time scale for the numerical diffusion factor 7 did not arise, but is now taken into
account as the numerical diffusion must be applied in the direction of flow with velocity
specified in multidimensional cases.

Due to the fact that the gradient VCDSS) is included in llf,(\‘;), it is clear that the use of
the generalized test functions (11.3.1) brings the numerical diffusion automatically into
the formulation. This is equivalent to the retention of artificial viscosity terms in FDM.

Using the similar procedure, the test functions for 3-D problems (with isoparametric
coordinates £, n, and {) can be obtained. The three-dimensional test function may still
be written in the general form (11.3.29).

v = viel. (i=1,2.3) (11.3.32)
where
1
T= E(EEhévi + QofinVn + Qche v )/ S (11.3.33)
2 h
&g:coth(%)——R—g, RgzviTg, S=u’+v +uw’
Thus
(€) (e) (e)
(e) GLOBY oDy oDy,
vy =
N T(u Ix +v ay +w 0z

Once again, it should be emphasized that the numerical diffusion is activated along
the stream line direction, which provides numerical stability. However, it has been
observed that, as the convection domination becomes significant, it is not possible to
eliminate entirely some numerical oscillations. We require additional measures in order
to resolve numerical stability, known as the discontinuity-capturing scheme, which is
discussed next.
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11.3.3 DISCONTINUITY-CAPTURING SCHEME

In the presence of very high gradients of a variable such as in shock waves, one may
apply numerical diffusion parallel to the direction of velocity gradients in addition to
the streamline direction. Hughes et al. [1986] and Johnson [1987] investigated the so-
called “discontinuity-capturing scheme” (DCS) and demonstrated improvements over
the case of a numerical diffusion function applied only along the streamline direction.
To be consistent with the present notations adopted in this book, a slightly modified
version of DCS is presented below.

The basic idea is that the numerical diffusion is applied not only in the direction
of velocity along the streamline, vi = v\*), but also along the direction, v; = v\, par-
allel to the velocity gradients directed toward acceleration as shown in Figure 11.3.4.
Note that vfb) 1s the projection of VE”) and thus the effect of the discontinuity-capturing
will be significant if the angle 6 becomes small, which represents very sharp surface
discontinuities such as in shock waves.

To implement this scheme, we consider that the numerical diffusion test functions
consist of the sum of the streamline numerical diffusion test function, lll(a), and the
gradient numerical diffusion test function, lIJ(b),

WO = ¢l 4 yl?) (11.3.34)
with
WO = v\ = 1y @l for streamline diffusion (11.3.352)
N =TV Py = TRy =L
W) = 18, = 18, for discontinuity-capturing (11.3.35b)
where vg") =v;, and vgb) is the projection of vl(“) parallel to velocity gradients directed

toward acceleration per unit mass, A;,

Aj =V, KkVk (11336)
v = v cos8 = viv; Ay (11.3.37)
7% = 1v; Aj/y, discontinuity-capturing factor (11.3.38)

with v = |v;|{4;]. Thus, it is seen that the discontinuity-capturing scheme is simply to
add an extra numerical diffusion test function applied parallel to the velocity gradients
directed toward acceleration. For distorted elements, we may encounter 7% — 7 to be

Figure 11.3.4 Discontinuity capturing scheme, vi.(a) =
v, vib) = vl-(a) cosO = viv; A; /vl A
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negative. In this case we choose
b) _ ¢ = max 0, =® — 7) (11.3.39)

-

sothatt®) — T always remains positive. Further details are found in Hughes et al. [1986].

11.4 GENERALIZED PETROV-GALERKIN (GPG) METHODS
11.41 GENERALIZED PETROV-GALERKIN METHODS FOR UNSTEADY PROBLEMS

For illustration, let us consider the Burgers’ equation in the form,

av;
R = 8—1‘1 + VijVi —VVijj — fi=0

The finite element formulation of the generalized Petrov-Galerkin (GPG) methods
using the numerical diffusion test functions projected on the discontinuous temporal
test function or DST as given in (8.2.41) or (10.2.5) is written in the form.

/ W(§) f W, R:dQdt = 0 (11.4.1)
£ 0

Here, the temporal test functions W(g) were discussed in Section 10.2.1, whereas the
Petrov-Galerkin test functions W, are the global form of the local test functions as the
sum of the standard Galerkin test functions and the numerical diffusion test function
for streamline diffusion.

Wy = o, +¥@ (11.4.2)

If the discontinuity-capturing scheme is desired, this can be added to (11.4.1) by
constructing the product of ¥{” and the convection term of the residual, leading to the
GPG equations of the form,

- ] i
fW(g)/ I:(CD,X + ‘P&a))(a—‘; + ViV — vy — fl) + ng)VjVi‘j]deg =0
£ Q
(11.4.3)

Note that the integration by parts is to be performed only with respect to the Galerkin
test functions, which will lead to the Neumann boundary conditions, whereas those terms
of the residual associated with numerical diffusion test functions will not be integrated
by parts since they should be contained within the elements as a measure of numerical
diffusion. Thus, the GPG integral takes the form, known as the variational equation,

- avg;
/g W(g)l:f (‘Dacbﬁa—f + Vi@ Pp jvpi + v Py jvg — Py fz) ds2
Q
n ddyvy;
—j; (DZVVi,j”]'dF]dg+./;W(§)/§27qu>u.k( aBt "y v,

_Vcbﬁ,ijBi — f,)de§ + fW(&)f T(b)VijCDu_kCDB!jVB,‘deg =0 (11.4.4)
€ o

The first integral indicates the Galerkin integral, with the second representing
the streamline diffusion, and the third integral indicates the discontinuity-capturing.
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Assume that the trial function is linear, independent of time, with the numerical diffusion
due to the source term being negligible. Furthermore, if the temporal test function,
W(E) = 8(¢ — 1/2) or W(£) = lisused and the variation of nodal values of the variables
v; is linear, then we obtain [see (10.2.13) or (11.2.6)]

[Acp + AN Bog + Cop + Kap)1 Vi = [Aop = (1 = M)AL(Bag + Cop + Kap)] v
+ At(Foi + Goi) (11.4.5)

where the definitions of all terms are shown in Section 11.2 except that various forms
of the numerical diffusion matrix, Cog, are given below.

CQB = f TVijCDa‘kCDBAde (11.4.6a)
Q
for streamline diffusion, and
Cap = f (T + T(b)) VijCDQ.kCDB'de (11.4.6b)
9

for combined streamline diffusion and discontinuity-capturing. It is seen that the nu-
merical difffusion factor T or 7 + 7 in GPG corresponds to At/21in (11.2.76) for TGM,
but is much more complicated and actually flowfield-dependent. Note also that effects
of numerical diffusion associated with terms other than convection are neglected in
(11.4.5). The complexity of the numerical diffusion factor increases significantly for the
case of the Navier-Stokes system of equations as discussed in Section 13.3.

Various options for temporal approximations or higher order accuracy may be se-
lected as discussed in Section 10.2. For the case of streamline diffusion (11.4.6a) with the
temporal parameter, ) = 1, and linear trial and test functions of finite ¢lements, the ex-
pression given by (11.4.5) is identical to equation 25 of Shakib and Hughes [1991] for the
constant-in-time approximations of the space-time Galerkin/least squares (GLS)inone-
dimensional problems. The GLS formulation will be described in the following section.

11.4.2 SPACE-TIME GALERKIN/LEAST SQUARES METHODS

The formal discussion of the least squares methods (LSM) of obtaining the FEM equa-
tions will be presented in the later chapters. However, in order to understand the
Galerkin/least squares (GLS) methods reported by Hughes and his co-workers, we ex-
amine briefly a basic procedure for the least squares formulation. First, let us introduce
the least squares variational function,

1
Q

which is then to be minimized with respect to the nodal variables v,;. In this process,
we multiply I by the numerical diffusion factor, 7.

711
3 = 2 vy =0 (11.4.7)
avmi
or
3711 IR,
- :Tf [Rd2=0 (11.4.8)
OVai o WVai
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Performing the differentiation in (11.4.8) and applying the temporal approximations,
we obtain

92 av;
W - Gy — Vij — v i — fi )dQdE =0
f (g)f ( +Vk " vaxkaxk) (at + ViVij = vV f) d§

(11.4.9)
which may be written as
[ W@ [ 1oy - fdode =0 (11.4.10)
£ Q
where L is the differential operator,
0 J 32
L=— - 11.4.11
ot +Vkan vaxkaxk ( )

At this point, we add the least squares integral (11.4.10) and the discontinuity-capturing
term as developed in Section 11.3.3 to the standard Galerkin integral. If we choose
only the convective term in (11.4.11), then, these steps lead to the form identical to the
generalized Petrov-Galerkin scheme given by (11.4.4). The sum of the standard Galerkin
integral, the discontinuity capturing term, and the least squares integral represented by
(11.4.10) is referred to as the space-time Galerkin/least squares (GLS) methods [Hauke
and Hughes, 1998]. Note that the contributions from additional terms other than the
convective terms in (11.4.11) are negligible.

The space-time GLS formulation is another form of generalized Petrov-Galerkin
(GPG) methods in which the only difference from the GPG methods of Section 11.4.1
is the numerical diffusion test functions for streamline diffusion,

v =1 Lo, (11.4.12)

where the numerical diffusion factor 7 can be constructed by introducing the local
curvilinear coordinate contravariant metric tensor [Shakib and Hughes, 1991],

gl = (% axk)_l (11.4.13)
dE; AE; o

With some algebra, it can be shown that one possible option for 7 is of the form

(3 G )]

where /; denotes the average element size in local coordinates. Note that if only the
convective termis chosenin (11.4.9), then the GLS formulation becomes identical to the
GPG formulation given by (11.4.4). The standard least squares methods will be discussed
in Section 12.1.8 for incompressible flows and in Section 14.2 for compressible flows.

Applications of GPG to the Navier-Stokes system of equations require some mod-
ifications for the numerical diffusion test functions in which entropy variables can be
employed to advantage. This subject will be discussed in Section 13.4.

Remarks: The temporal integral with the temporal test function vi/(g) first intro-
duced in (10.2.5) plays the role identical to the process referred to as the discontinuous
space-time integral [Shakib and Hughes, 1991; Tezduyar, 1997]. Many possible options

379



380

NONLINEAR PROBLEMS/CONVECTION-DOMINATED FLOWS

of this temporal test function can be chosen (Tables 10.2.1 and 10.2.2). Explicit forms of
integrals (11.4.4) plus the least squares integrals (11.4.9) as applied to the Navier-Stokes
system of equations are shown in (13.3.19).

11.5 SOLUTIONS OF NONLINEAR AND TIME-DEPENDENT EQUATIONS
AND ELEMENT-BY-ELEMENT APPROACH

As was shown in Section 10.3.2, the global assembly of local stiffness matrices can
be avoided via the element-by-element (EBE) scheme. In dealing with nonlinear and
time-dependent equations, however, some modifications are required. We discuss in this
section the Newton-Raphson methods of solving nonlinear time-dependent equations,
followed by the generalized minimal residual (GMRES) equation solver and EBE
scheme.

11.5.1 NEWTON-RAPHSON METHODS

Recall thatin Section 11.2.1 we held ¥; constant in ¥;v; ;, which was meant to be updated
in each step of calculations. Otherwise, GGM or GPG, methods described in the previous
sections, must be modified in order to solve nonlinear equations. For example, we may
write (11.2.6) of the GGM formulation in the form where ¥; is no longer held constant.

Euf = Aqﬁvg?—l + T]AI(B‘IB]W'V:JLj_l n—H + KO‘BVBl ) o AOLBVE{
(1= A (B VIVl + Kap¥fy) = A (Fa + Gua) = 0 (11s1)
with

Bugjy = fg DDy By dS (115.2)

This form is based on the assumption that the squares and products of velocity compo-
nents vary linearly within the time step as in (11.2.6),

VIR = (1 — Vv 4+ EviTivgT (11.5.3)

One of the most efficient approaches to solve nonlinear equations is the Newton-
Raphson method developed from the Taylor series expansion of the residual of the type
in (11.5.1).

9 +1.r

ntlr+l _ pntlr n+l.r+l1 .. =
Eyi =E,; "+ 8vn+l FAVg +oe=0 (11.5.4)

Bj

which implies that the residual at a given time station » + 1 as incremented to the
r + 1 iteration cycle from the previous cycle r should vanish if (11.5.1) is to be satisfied.
Retaining only up to and including the first order term in (11.5.4), we obtain

J(;E;j rAVEerJrE — _EZ;H.I’ (1155)
where
AVn-H F+1 Vn+1 g+l V'IJ_r]J (1156)

- 'BJ BJj
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and J”1 is the Jacobian,

opij
n+1.r
]nJrl‘r - aEuj_
aBij T P n+1r
Vgj
or
nt+l.r n+lr n+l.r n+l.r
v Voo v av._
n+lr 0 vk n+l.r n+lr 7 Vi ni
JﬁBif - Ao“]a A+lr +mAL I:BOW]/W (3 n+1l.r vﬂi +ka 3 n+1_r) + K‘“la n+l.r:'
Vgi Vgj Vi M}
n-+1,r +1,
= Aandppdi; + nAt[Bankv (ByBBijnf + V';k rST]BB,-]-) + Kunaﬂﬁaij]
= Aupdij +NAI[BuyjgVy " + Bupiy 5 VIE" + Kogdy/] (11.5.7)
with

BU‘B/Y :./QCDO‘(DV](DB dQ, BHB’W :L¢&¢B.k¢y dQ

The Newton-Raphson procedure described above may be simplified by revising the
Jacobian matrix and the right-hand side residual as follows:

At
n+l.r
_]04;,]. = Aupdij + "“2_(Ba[3ij + KﬂtBt‘/)

with
B = / b, gV, dQ
Q
and (11.5.1) being replaced by

1 r " At . n At n
E(x;H' = AQBVB;H + 'E—(Ba[_), + KQB)VB?-I - AO‘BVBi + —j_(B‘lB + KU‘B)VBI'

n ¥ At n r
= Al(Foi + Gui) = A AV + 5 (Bap + Kug) AV — At(Foi + Gi)
The Newton-Raphson iterations are performed using (11.5.5) within each time step
until convergence which requires that AVE}””H = 0in (11.5.5) before proceeding to

the next time step in (11.5.7).

11.5.2 ELEMENT-BY-ELEMENT SOLUTION SCHEME FOR NONLINEAR TIME
DEPENDENT FEM EQUATIONS

The linear and nonlinear simultaneous algebraic equations arising from the entire as-
sembled global system of FEM formulations may be solved using direct or iterative
methods. For a very large system, iterative methods are preferable to direct methods.
Furthermore, it is often necessary to devise special techniques such as the frontal meth-
ods [Irons, 1970, Hood, 1976] or element-by-element (EBE) solution methods [Fox and
Stanton, 1968; Irons, 1970]. In these methods, the standard assembly process of local
stiffness matrices is not necessary. Instead, the product of a matrix by a vector can be ob-
tained by assembling the product of local element matrices and the corresponding part
of the vector, thus reducing the cost of computer time and storage. Initial contributions
of the EBE concept to a large system of equations include Ortiz, Pinsky, and Taylor
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[1983], Hughes, Frencz, and Hallquist [1987], Nour-Omid [1984], and Nour-Omid and
Parlett [1985], among others.

Recall that we discussed the EBE algorithm for the linear equations in Section 10.3.
For nonlinear stiffness matrices and time dependent problems, the procedure for EBE
must be modified. These topics are elaborated below.

If the system of equations is nonlinear, then we may replace the preconditioner Deg
(see Section 10.3.2) by the Newton-Raphson Jacobian matrix. The global FEM nodal
error can be written as

Ey=KygUs — Fa (11.5.8)

Applying the Newton-Raphson scheme as shown in Section 11.5.1, we may rewrite
(10.3.15) in the form

Ut =0 — T (Fg — F) (11.5.9)
where the EBE scheme is applied to the stiffness matrix as presented in Section 10.3.2
and the Jacobian matrix Jug is given by

d E,

g =
P8,

(11.5.10)

which is considered as the preconditioning matrix. Here, as shown in (10.3.17), we may
replace Jog in (11.5.9) by the main diagonal of J.g so that
Ut = U = J oy (Fa = F) (11.5.11)

(o

The solution is obtained similarly as in (10.3.17) except that Ji. and F,, are nonlinear
and must be updated at each iteration. Note that F, is converted from the EBE-based
stiffness matrices.

In order to improve the solution accuracy, we may use the preconditioned conjugate
gradient (PCG) method or the method known as the Lanczossf ORTHORES solver
[Jea and Young, 1983]. In this method, begin with a starting value Ug and compute

Ut =o' DL+ UL + (L= U (11.5.12)
with
DL E;
po= B g
(Da Kg DB)

1 r=0
att = p+t (DLED) 177!

[l — ( . “)1 —:| > 1

br (D7 B )@
E, . Foz - KOLBUE F=
“ T (- Kg Dy + EY + (1 —a)EE r=1,2,...

D =QuE; r=0 (11.5.13)

where Qg is the Jacobi preconditioner,
Qug = dia(Kog) (11.5.14)
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Thus, the inverse of Q. is the reciprocal of the diagonal of K,z which can be partitioned

for EBE computations.

The preconditioner may be constructed from the square root of the main diagonal

of the stiffness matrix. To this end, we write (11.5.11) in the form

Ea —_ Fu - KG‘BUB
with

J— 1 -

Ko = W(;/z KvanB

Pl

— _ 1
Up = W' U,

E

- —(e) , (¢) —=(e) ()3 (e

Fﬂ:lJFNA/\L/u FN:WNRFR)
e=1

WA, = dia KL

For known initial solution vector Ug, compute

£ =F. - KUy

(11.5.15)

(11.5.16)

Subsequent steps are the same as in (11.5.15). The final solution is obtained as
Ur = W, Up = dia(Kug) 1T

The LanczosfORTHOMIN solver [Jea and Young, 1983] may be used. In thisscheme,
the preconditioning processes (11.5.15) through (11.5.16) are used together with the

following steps:
Step 1
Eg = Fy — KUy
R =E
D =P = E
(De E7)
(D§ Ksp D7)
Ul=U’+b°P°

0.—

Step 2
(DL EL)
(D; Ksp Df)
PP=FE +b P!
P =D+ F"
5 (DLEY)
(D5 B

ro__

EM = E, —bKyP;
D' =D, — VK P,
Ut =U, + VP,

(11.5.17)
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Iterative solutions through the above steps lead to the final converged solution as

Uy = W Up = dia(Ko5) > Uy (11.5.18)

For time-dependent problems, we may consider the main diagonal of the mass matrix
as the preconditioner. For example, the matrix equation

(Mug + 0ATKg)Ug ™ = [Mg + (1 — 0)A1Kog|Uf + ALF, (11.5.19)
can be written as
—1 —% —n+1 -1 —4T+n -
(Bup + 041 My KMy )T = (3 — (1 = 0)ar M KynMyg |U; + ACF,
(11.5.20)

—n 1 — -1 :
where U, = Mg Up and F, = MOLB5 Fj. Note that the eigenvalues of (11.5.22) are the
same as those of (11.5.20) such that

_l 1 1
Bus + BAL Moy Kypl = | Ma’ (8yn + 01 M Kio Mo ) M, 3 (11.5.21)
Rewriting (11.5.15) in the form
E.= ApU,~ — BypU, — ArF, (11.5.22)

it is now possible to apply steps 1 and 2 of the steady-state case with initial and boundary
conditions applied to (11.5.22).

11.5.3 GENERALIZED MINIMAL RESIDUAL ALGORITHM

The conjugate gradient method discussed in Section 10.3.1 is accurate and efficient
for linear symmetric matrix equations. However, for problems in CFD where nonsym-
metric nonlinear, indefinite matrices are involved, the Generalized Minimal Residual
(GMRES) algorithm has been proved to be efficient [Saad and Schultz, 1986; Saad,
1996]. This method is based on the property of minimizing the norm of the residual
vector over a Krylov space. The Krylov space is a general concept based on the simple
observation that in any sequence of iterates there will be a smallest set of consecutive
iterates which are linearly dependent, and that the coefficients of a vanishing combina-
tion are the coefficients of a divisor to the characteristic polynomial. See Householder
[1964] for a detailed discussion of the Krylov space.

For the purpose of our discussion, let us consider the global form of the finite element
equations in the form,

KugUg = Fo (11.5.23)

in which preconditioning through the EBE scheme is to be implemented as in Sec-
tion 11.5.2.

One of the most effective iteration methods for solving large sparse asymmetric lin-
ear and nonlinear systems of equations is a combination of the CGM with preconditions
in minimizing the norm of residual vector over a Krylov space

K" = span[Uy, KUy, K*Uy..., K" VU] (11.5.24)
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This algorithm is a generalization of the MINRES [Paige and Saunders, 1975] for solving
nonsymmetric linear systems and Arnoldi process [ Arnoldi, 1951] which is an analogue
of the Lanczos algorithm for nonsymmetnc matrices [Lanczos, 1950]. In the GMRES
scheme, we determine Uy () 1 U, where Uy is the initial guess and U is a member of
the Krylov space K of dimensmn r such that the L, norm error

| Eall = || Fu — Kap(US” + Tg) | (11.5.25)
is minimized. Here, we use a smaller value for r and restarting the algorithm after every
r step; thereby, the amount of storage required can be minimized.

The step-by-step GMRES scheme is as follows:

(1) Choose Uéo) and compute

™

EO = F— KUY = F, ~FO, Ty = JTVOAL,
e=1

F(O)(‘f) K(e) U(O)(C’)

B = g J|EXY| (Gram-Schmidt orthogonalization)

(2) Iterate fori =1,2,...n
ali1) = E”(z'+1)‘E&j) _ K«xBFS)Fg), i=1.2,.. i

i . ) [ o
B0 = Ky~ Y = Ky B
j=1 j=1

B0 = B9 ) 20)

(3) Approximate solution:
Let us consider a square matrix consisting of the columns of residuals in the

form
’_Fgl) “E—§2) o Egr)
= F E)
B = |2 B2 £ (11.5.26)
_E,(ql) F’(f) o ‘E’(qr)—
Then, it can be shown that
KBy = BV U (11.5.27)
where Hglg "7 is the upper Hessenberg matrix of the form
F"(I'E) a@lh o gD T
H 2% | a®d . D
11 . .
HM = IE2| - ot (11.5.28)
0 0 .o “ FD H_
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Here, the idea is to find a vector y; which will minimize the residual error as
follows:

min F — Ko (U + 75) | = min el " — Ko By e
= | B (eq = e ye)|

M
= Jew — Hyg Vye| =0 (11.5.29)
with
e = {|UD].0....0} (11.5.30)
ve = Hyz ey (11.5.31)

(4) Restart
EO = F, — KgUy’
el r r
E, =El/IED]
(5) Go to step 2 and continue until convergence.
The minimization process above does not provide the approximate solution explic-
itly at each step. Thus, it is difficult to determine when to stop. This may be simplified

using the so-called Q-R algorithm as suggested by Saad and Schultz [1986]. In this
approach, we utilize the Givens-Householder rotation matrix, Ry, such that

Heyg = RonHiyg (11.5.32)
where

R(xg - RrRr—l PP .R]

-1 A

1
Cf‘ 5r
Ry = B (11.5.33)
1
L 1

with ¢ + 52 = 1 and the size of the matrix being (m + 1) x (m x 1) for m steps of the
GMRES iterations. The scalars ¢, and s, of the rth rotation R., being orthogonal, are
defined as

s, = Hrr (11.5.34)

¢ = H,, ,
Syt 12, S+ 12,,)




11.5 SOLUTIONS OF NONLINEAR AND TIME-DEPENDENT EQUATIONS AND ELEMENT-BY-ELEMENT APPROACH

For example, let us assume 7 steps of the GMRES iterations so that (11.5.28) is written
as

lea = HE vl = | Rug (e = H )| = 20 = T v (11.5.35)
leading to the minimization,
min| g, — H’Hy | = | (11.5.36)

and y; satisfies

H,, - - Hp, Hi, 1T w] [e ]
0 ) ) . :
0o 0 - : : =1 (11.5.37)
0 0 0 _ﬁrvl,r—] Er—l.r Yr-1 €r-1

.0 0 0 0 H, Lyl L& |

in which the back substitution provides the inverse required in (11.5.31).
To obtain the Hessenberg matrix in (11.5.37), we proceed as follows. If m = 5, then
we have

(A hyy his g s
hay hy hyx hay hos
- ha hsy ha hss

Hs = 11.5.38
’ has  has  hys ( )
hsa  has
| hes
“hy Tl FatloT
hi | Ell
0 0
(1) _ _
h) = 0 | = 0 (11.5.39)
0 0
L0l L 0 |

12
1= (hfl +h§1) /, c1 = hy1/ri, s1 = hy/ry

The first column of Hs becomes

~
—

RO = R = R = R,R, - R

oo O o o

Similarly,

el =Re?”, e =R,R, - RV
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This process leads to

S5 5 ) (5 ()T
hll hlZ h13 h14 h15
(5) 5 (5 (5
h22 hgiﬁ) h24) h25)
S 5 6
7 _ hyy  hy s (11.5.40)
PORAC) o
44 43
()
hSS
i e

which is then inserted in (11.5.37) to determine y¢, required in (11.5.31).

Example 11.5.1

Solve the following equations with an unsymmetric stiffness matrix using the GMRES
algorithm. Compare with the exact solution: U; =1, U, =2, U; = 3.

3 2 2 U, 1
—4 -1 1 U, | =1-3
5 =2 -1 Us =2
Solution:

1. Choose Uéo) = [ 2 | (This is a deliberate choice to be much different from the

exact solution.)

2. Compute
~10
EV = F, - KU = | 10 | |EQ| = V344 = 18.5472
-12
(0) —0.5392
_ El
VE| | —0.6470
3. Iteratefori=1.2, . ...,r
(a)i="L
1 0.7543
AV = K EY = | 09705 Forj=1,....i:
—3.1272
a'V = EVEY = 21395
1.9084
ED = F _ gUOEY | 01831
—1.7429
|EL | =2.5910
o E&l) 0.7366

W = e = | —0.0707
2 —0.6727
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(b i =2:
. 3.4137
E® = KgEY = | —3.5482
4.4968
For j =1,2Do
=1
a?) = EOFEY = _6.6630
—0.1788
EQ = FE® _g@0EY — | 00442
0.1858
j=2
a®? = EOFY = —0.2598
0.0126
E® = FO _ qeDED _ | 90259
0.0111
| EQ| = 0.0308
~ 0.4084
_ EY
- 5 = [ 0.8392
1ES| | 0.3590
(¢c) i =3
. 2.1856
EO = KBS = | —2.1138
0.0045
Fer:l,...SDO
j=1r
a®V = FOFY = 17561
0.9342
ED = EO — q60EY Z | 08624
~1.4972
j=2
a®? = EOEY = 23210
—0.3593
E® = —a® 2)E -0.7383
—0.3159

j=3:
a®d = EVED = _0.8798

FO — G _ a(s,s)F(S) ~
o o o

oo O

a* = | O] =0,
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4. Construct Hessenberg matrix

R U

|20 ae> az | ][R

O o e e
N ~(3 y® 0

o0 B

2.5910 —0.2598  1.7561 | | y@ 0
0 0.0308 —0.8798 | | y? 0

5. Apply Givens rotation to reduce matrix
(a) First rotation:

2.1395 —6.6630 —2.32107] [y [18.5472

B, Rt
CJ'Zr—y, S};:%, i’jI h3f+h?+]j
(1.1) (1)
= a —0.6367 51 = Eo —0.7711
Vs oy (| £0]) o> ()
) JLD @D L6 )
c s ” £ | 222 400 i c s 0 “ ES )H
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(b) Second rotation:
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6. Compute residual
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r)
| —0.5392  0.7366 0.40847 [-0.2157 -2
EV | =] 05392 -0.0707 0.8392||-2.8185| =] 0
£r) —0.6470 —0.6727 0.3590 § | —0.0987 2
3

7. Update Up
a1 [u] 2]
Us U |+ ES =2
Us U ED 3

Note that the exact solution has been obtained.

11.6 EXAMPLE PROBLEMS

11.6.1 NONLINEAR WAVE EQUATION (CONVECTION EQUATION)

Consider the first order nonlinear wave equation of the form used in Section 4.7.5.

0 d
—u+u—u:0, 0<x<4
or ax

u(x,0)=1 0<x<2

u(x,0)=0 2<x<4

Required: Solve with GPG using the numerical diffusion given by (11.3.32).
Solution: The GPG formulation begins with

L du ou o
%% &b, [ — — \|d W uu—dx |deE=0
/0 ('E)U (ar +”ax) x+[ “ox x] :

with
o ()
ad
v = Tu—"-

X

where 7 is the numerical diffusion factor (intrinsic time scale),
Ch
T=——
2u

with C being the CFL number,
1
C=a=cothH— —
@ = co

which is characterized by the numerical diffusion as shown in Figure 11.3.2 defining the

accuracy and stability for the solution of the nonlinear convection equation.

Asaresult, it is seen that dispersion or dissipation errors decrease with mesh refine-
ments, as shown in Figure 11.6.1. Accuracies deteriorate significantly with inadequate

numerical diffusivity constants outside the stability and accuracy criteria.

11.6.2 PURE CONVECTION IN TWO DIMENSIONS

The two-dimensional pure convection equation for a concentration cone placed in a

rotating velocity field, as shown in Figure 11.6.2a is given by
ou P du

- T
at + 'Bx,-
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a complete rotation is accomplished in 400 time steps. The Courant number at the peak
of the cone is approximately 1/4.

For the GTG method with the lumped mass, the solution with one iteration
(Figure 11.6.2¢) has wiggles and reduced cone height more than those with three itera-
tions (Figure 11.6.2d); an improved solution is obtained for the case of consistent mass
(Figure 11.6.2¢) for t = m/4 as compared with that for lumped mass. The results of the
GPG method att = /4 are shown in (Figure 11.6.2f) (1), (2), (3), and (4) corresponding
to the numerical diffusivity of @ = 107%,1072, 1, and 10%, respectively. In Figure 11.6.2g,
(1) and (2), the GPG methods show oscillatory behavior at & = 10~* and 1072, which
disappears at @ = 1 and 10? in Figure 11.6.2g, (3) and (4). Although the GPG methods
provide numerical diffusion in the direction of the flow for stability, the methods may
be restricted within the low Reynolds numbers unlike the GTG methods.

11.6.3 SOLUTION OF 2-D BURGERS’ EQUATION

The purpose of this section is to show the effectiveness of GPG for the solution of the
Burgers’ equations with convection terms and its solution convergence as a function
of the grid refinements. We use the geometry as shown in Figure 11.6.3.1, the same
geometry as in Section 10.4.2.

Given: The Burgers’ equations with the nonlinear convection terms are given by

ou ou dut u  du
P UBRETE () Ny

o Yo ay ax2 | 9y?
ov v v 82V+82V =0
— qtu—+v——vl-—+— |- fi=
at ax ay ax?  9y? !
with
1 x4 2xy
r=— 3x%y? -2
h=—axm Ay TN A
1 242
= y + xy+3y3x2—2vx

S+ (4D

Exact Solution:

1 e
= — 4
“ 1+1¢ Y

! 2

V= Tr1 + xy
Required: Solve the Burgers’ equations using GPG for the coarse, intermediate,
and fine meshes as shown in Figure 11.6.3.1. Neumann boundary conditions are to be
specified at nodes marked by N and all other boundary nodes are Dirichlet. They are
computed by the exact solution as given above. Use bilinear isoparametric elements
with v =1, Ar = 1074, and m = 1/2. Begin with the initial conditions # =0 and v =0

specified everywhere.

Solution: Shownin Figure 11.6.3.2 are the solutions atx = 2and y = 1 for the coarse,
intermediate, and fine meshes. It is seen that, although the initial conditions as given
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Figure 11.6.3.1 Geometries for Section 11.6.3, N representing Neumann
boundary conditions, Dirichlet and Neumann boundary conditions are
prescribed from the exact solution. (a) Coarse grid. (b) Intermediate grid
(halved from the coarse grid). (c) Fine grid (halved from the intermediate

grid).
10 u— GPG 10 10
g u— GPG u-— exact
u — exact 8 -
6 6
4
v — exact 4 v — exact
2
T o 2 f
v— GPG v— GPG
0 0 0
0 0.5 1.0 1.5 2.0
0 0.5 10 1.5 2.0 0 05 1.0 15 20
Time Time Time
(a) (b) (c)

Figure 11.6.3.2  Solution of 2-D Burgers’ equations, x =2, y = | (v = 1). (a) Coarse grid. (b) Intermediate
grid. (¢} Fine grid.
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are © = 0 and v = 0, they quickly rise toward the exact solution. For the coarse grid,
however, the solution overshoots considerably. The convergence to the exact solution
is evident for the intermediate grid and significantly for the fine grid.

11.7 SUMMARY

The generalized Galerkin methods (GGM) introduced in Chapter 10 have been
extended to the Taylor Galerkin methods (TGM) and to the generalized Petrov-Galerkin
(GPG) methods in order to cope with convection-dominated flows. It was shown
that the basic idea of TGM is to provide numerical diffusivity. In GPG, more rigo-
rous approaches to treat convection-dominated flows are employed through SUPG,
discontinuity-capturing scheme, and space-time Galerkin/least squares. The significant
features available in GPG are to explicitly provide numerical diffusion in the direction
of streamline and toward velocity gradients or acceleration. Furthermore, the concept
of least squares is applied to reinforce the numerical diffusivity.

In this chapter, we also examined numerical solution of nonlinear equations using
the Newton-Raphson methods. The element-by-element methods in which the assem-
bly of total stiffness matrices is replaced by the element-by-clement vector operation
introduced in Section 10.3.2 are extended to the nonlinear equations. Furthermore, we
reviewed GMRES which is regarded as the most rigorous equation solver for nonlinear,
nonsymmetric matrices.

Major applications in CFD are the solutions of the Navier-Stokes system of equations
for incompressibie and compressible flows. These are the topics to be discussed in the
next two chapters.
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CHAPTER TWELVE

Incompressible Viscous Flows
via Finite Element Methods

As noted in Chapter 5, the condition of incompressibility for incompressible flows is
ditficult to satisfy. The consequence of this difficulty results in a checkerboard type
pressure oscillation which occurs when the primitive variables (pressure and velocity)
are calculated directly from the governing equations of continuity and momentum.
Various methods are used to overcome this difficulty. Among them are: mixed methods,
penalty methods, pressure correction methods, generalized Petrov-Galerkin (GPG)
methods, operator splitting (fractional) methods, and semi-implicit pressure correction
methods. Another approach is to use the vortex methods in which stream functions
and vorticity are calculated, thus avoiding the pressure term. Some of the earlier and
recent contributions to the finite element analyses of incompressible flows are found in
[Hughes, Liu, and Brooks, 1979; Carey and Oden, 1986; Zienkiewicz and Taylor, 1991:
Gunzburger and Nicholaides, 1993; Gresho and Sani, 1999], among many others.

Instead of being limited to incompressible flows, we may begin with the conserva-
tion form of the Navier-Stokes system of equations for compressible flows, in which
special steps can be devised to obtain solutions near incompressible limits (M., = 0) .
This allows us to use a single formulation to handle both compressible and incompress-
ible flows. We shall address this subject in Section 13.6. For this reason, treatments of
incompressible flows in this chapter will be brief.

12.1 PRIMITIVE VARIABLE METHODS

12.1.1  MIXED METHODS

Consider the governing equations of continuity and momentum for incompressible flow
in the form:

Continuity
v,; =0 (12.1.1a)
Momentum
pvijVi+pi— v ;=0 (12.1.1b)

It is well known that the standard Galerkin formulation of the simultaneous system
of equations for continuity and momentum (12.1.1a.b) becomes ill-conditioned, known
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as the LBB condition [Ladyszhenskaya, 1969; Babuska, 1973; Brezzi, 1974] as pointed
out in Section 10.1.4. In order to circumvent the numerical instability, trial functions
for pressure are chosen one order lower than those for the velocity, defined as shown
in Figure 10.1.3. We may write the standard Galerkin integrals in nondimensional form
as follows:

1
D (v, i vi+pi——vi;|d2=0 12.1.2
fg (V-fvj + P Rev‘”) ( a)
f bov; ;1 dQ2 =0 (12.1.2b)
Q

where the pressure approximation is of one order lower than the velocity approximation
so that the incompressibility condition may be satisfied as discussed in Section 10.1.4.
Combining (12.1.2a,b) yields

Dapij Copi | | vaj | _ | G (12.1.3)
CO‘B] 0 Pp 0
with

1
DaBij :[ (CDC,(DB,kkai,- + R_q)a,kCDB.kaij)dQ
Q c
Copi Z/Q‘Da&)l%-jaide Cogi :/S;d)aq)ﬁ-jdg,

1 =
Gy :L§¢aVi,fnfdr

where the test function &, for continuity is the same as the pressure trial function.

As mentioned in Section 10.1.4, if pressure is interpolated as constant (pressure node
at the center of an element) and velocity as a linear function (velocity defined at corner
node, Figure 10.1.3a), then such element becomes overconstrained (known as locking
element). This situation can be alleviated by using linear pressure and quadratic velocity
approximations (Figure 10.1.3b). In this process of unequal order approximations for
pressure, we seek to achieve the computational stability. Many other available options
are discussed below.

12.1.2 PENALTY METHODS

As seen in Section 10.1.4, the incompressibility condition can be satisfied by means of
the penalty function A such that

p=—\vi; (12.1.4a)
Pi= —7\V]'.j,' (1214b)

which is designed to replace the pressure gradient term in (12.1.2a). The reduced
Gaussian quadrature integration for the penalty term is still required to avoid being
over-constrained, as discussed in Section 10.1.4. In this way, we obtain the solution of
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(12.1.2a) without (12.1.2b), but the mass conservation is maintained through the penalty
constraint.

Another approach is to combine the penalty formulation with the mixed method of
(12.1.2a,b). This can be achieved by replacing the continuity equation with the Galerkin
integral of (12.1.4a),

[ o, (vi_,- + B)dg —0 (12.1.5)
Q A
This will then revise (12.1.3) in the form
Dogij  Copi ' o
pir ek [VB’] _|© (12.1.6)
CQBJ' Euﬁ Pp 0
with

1
EQBZf =&, Ppd2
A

Q

which provides an additional computational stability in comparison with (12.1.3).

12.1.3 PRESSURE CORRECTION METHODS

The basic idea of the pressure correction methods is to split the pressure and velocity
in the form [Patankar and Spalding, 1972]

pr=p4p (12.1.72)
A (12.1.7b)

H

\Y

where v* denotes the intermediate step velocity. Using (12.1.7) in (12.1.1b) we obtain,
for the case of unsteady flow,

avi\" av; /m 1, * n !
B ERE——

which may be split into

E)vi * 1 " % .n n

(E) = R_evi'jj — Vi Vi =(pi) (12.1.8a)
v\’

(d—‘;) =—(p;) (12.1.8b)

where the asterisk and prime indicate intermediate and correction values. The solution
of (12.1.8a) is not expected, in general, to satisfy the conservation of mass. In order to
rectify this situation, we take a divergence of (12.1.8b) and write

/ d /
Py =—— (Vi) (12.1.9a)
‘ at
which may be recast in a difference form
1

/ ~

Pa = =5 (i) f—vi) (12.1.9b)

i
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Here we intend to force v/ to vanish for mass conservation so that

1
At

Thus, the solution procedure consists of

(Vi) (12.1.10)

4 —
Pii=

(1) Solve(12.1.8a) for v/ withinitial and boundary conditions and assumed pressure.
(2) Solve (12.1.10) for pressure corrections, p’, with the boundary conditions p’ = 0
on [ pand pfini on I y.
(3) Determine v, from (12.1.8b).
(4) Determine
pn—H :pn + p/
Vit = v v

(5) Repeat steps (1) through (4) until convergence has been achieved.

The generalized Galerkin formulations may be used for (12.1.8a), (12.1.10), and
(12.1.8b). Mixed interpolations (between velocity and pressure) are not required. Al-
though the mass conservation is achieved through the pressure correction methods, the
convective terms may still contribute to nonconvergence if convection dominates the
flowfield. Toward this end, the generalized Galerkin formulation can be replaced by
GPG methods.

12.1.4 GENERALIZED PETROV-GALERKIN METHODS

The mixed method may be modified so that both pressure and velocity can be inter-
polated in a same order. The convection and pressure gradient terms are treated with
generalized Petrov-Galerkin (GPG), and the pressure is updated using the standard
pressure Poisson equation.

L. 8v,- 1
[0 W(§) [fg {‘D“(a_z +VijVi— Ew.”) + Welvi v + P.f)]dﬂ}dé =0

(12.1.11)
[ @y pii + (vijv)i]ld2 =0 (12.1.12)
Q
Integrating (12.1.11) by parts leads to
At At
|:Ao¢B + _i_'(B(xB + Cop + Kas)]Vg:rl = |:A043 — 7(3{1[3 + Cop + KQB):|V§[-
+ At (Fy + Gui) (12.1.13)
where
Fyi = —f TVEPo kPp i dS2pg (12.1.14)
Q

with all other quantities being the same as in (11.4.5) except for the Reynolds number.
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The nodal pressure pg will be updated from (12.1.12), which assumes the form

Ewpg = Hy + Oa (12.1.15)

with
E(szf (Da’jCDB,,'dQ
Q
Q
Qa =[(£apln1dr
r

Note that pressure oscillations are suppressed not only from (12.1.15) but also the
damping effect built into (12.1.14).

Remarks: We note that GPG methods can be applied to the incompressible Navier-
Stokes system of equations in which the special treatment for pressure is no longer
required. In this case, the conservation form of the Navier-Stokes system of equations
can be utilized and it is possible to formulate various schemes which can handle both
compressible and incompressible flows. Furthermore, the conservation variables can
be transformed into primitive variables in order to accommodate the incompressible
nature of the flow. In this case, details of derivations of GPG schemes for incompressible
flows are the same as in the case of compressible flows, which will be presented in
Section 13.3.

12.1.5 OPERATOR SPLITTING METHODS

The pressure correction methods may be solved with fractional steps, often called oper-
ator splitting methods or fractional step methods [ Yanenko, 1971], such that equations
of hyperbolic, parabolic, and elliptic types are solved separately [Chorin, 1967]. To this
end, we consider the standard Galerkin finite element equations of momentum and
continuity in the form

AO‘BVB" + Eoch\{ VeiVyj — Copi Pg + KajBiVBf — Gui =0 (12116)

C‘XBVBi =0 (12117)

(1) Hyperbolic Fractional Step Operator for Convective Terms

AQBVB,‘ = _anﬁjvvﬁivvj + Gm' (12118)
where

Eogjy = Bugjy + Capjy

with C.g;,, indicating the term constructed from the numerical diffusion test functions.
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The solution of (12.1.18) is obtained from the GPG formulation,
At . At
(A(Yﬁ + —Eaﬁ[yVn ) n+l Aaﬁvgi - 5 Euﬁ/'y Blv + At Gy (12119)

2 Yi Bl

(2) Parabolic Fractional Step Operator for Dissipation Term

AaBVBi = _KOLijVBi (12120)
{Vg —_ V,‘ on FD
Vi_jl’lj =g On FN

We solve (12.1.20) with TGM formulation so that

At

At
Eag,])vﬁ, = AV — 5 — Kajei V" + AL G (12.1.21)

(3) Elliptic Fractional Step Operator for Pressure Term

n+l vf’l+1

v i i n
AuB—E““—A—EB— = Copi "' (12.122)

CopVl' =0 (12.1.23)

P=nm onl'p
pini=g only

Here the enforcement of incompressibility is achieved by substituting the first term
on the right-hand side of (12.1.22) by (12.1.23).

1
Dugipyt' = — = Vi (12.1.24)
where
Dogi = Coy Ay Cpi (12.1.25)

We calculate p”"l from (12.1.25) and determine the final velocity from (12.1.22),

vt =9t 4+ At AL Cogipp ! (12.1.26)

i

Note that the fractional step methods are similar to the pressure correction methods,
although there are two distinctly different aspects:

(1) The solution involved in (12.1.8a) is split into two steps: hyperbolic step and
parabolic step.

(2) The processes (12.1.8b) and (12.1.10) of pressure correction methods are com-
bined into an elliptic step of the fractional step methods. The pressure Poisson
equation is not used here.

It should be noted that (12.1.22) may be differentiated spatially to obtain the pressure
Poisson equation as in the pressure correction method, expediting convergence to a
certain extent.
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121.6 SEMI-IMPLICIT PRESSURE CORRECTION

In this scheme, the GPG method is used for convection dominated flows, but we resort
to the pressure correction method to maintain conservation of mass and to suppress
pressure oscillations.

With the continuity equation written in the form

1ap

Far +(pvi); =0 (12.1.27)

we obtain the finite element equations as follows:

Continuity

Dyg pg + Cogivgi =0 (12.1.28)
Momentum

AQBVB,' -+ (BaBjj + Kuij) vpi + C‘)‘Bipﬁ =0 (12129)

where B,g,; contains the GPG terms,
Denote the following:

Appy = pitt - ph (12.1.30)
AVE = oy o AVHD Ay D) (12.1.31)
and

p=(1-0)p"+6p""

=0(p"" - p")+ p" (12.1.32)
= 6(Ap") + p"

vi = (1= 8)v +ov/*!
—o(av'D — AV 4 vr (12.1.33)
= 0(Av]) + v/

Substituting (12.1.32) into (12.1.29) and taking a temporal approximation, we obtain
Avgi = —At[(Bquj + Kujﬁj) (OAVSI- + Vgi) + C(xBf (eAPE + pg)] (12134)

Combining (12.1.32) into (12.1.34) and separating the resulting equation into two parts
leads to

1 n n
(AB( By + Kujp)|AVY = At[(Bysjj + Kyjai)Vii + Copi] (12.1.35a)
[Aup + A10(Bupjj + Kojp)IAVS = A16C,5: A (12.1.35b)

Substituting (12.1.32) into (12.1.28) and using (12.1.33) and (12.1.35), we obtain

(Cayi Qs Copi) AP = —Cogi AL (v, + 0AVE) (12.1.36)
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where

1 M?
Dep = fgﬁ%%dﬂ B LF%‘DBW, Qup = Aag + A18(Bopjj + Kajpy)
(12.1.37)
For incompressible flows, we have D.g = 0. This gives
APO? oy Q72 Copi Apf = Coi AL (V] +8AVEY) (12.1.38)
The von Neumann analysis shows that, for stable solutions, Ar must be limited by

1
t< —— 41— —
“v|V Re + Re
Upon solution of the pressure equation (12.1.38), we return to (12.1.34) for the corrected

velocity components.
A simplified version of the previous approach arises in the absence of viscosity terms:

A (12.1.39)

1 ap

— X v, =0 12.1.4
2o TV ( 0)
E)\Ji

. +p;=0 (12.1.41)

Rewriting (12.1.40) and (12.1.41) yields

n(2)
'

—oAvY) =0 (12.1.42)

N

1
= Ap" + Ar(v] + 0 AV
a

" L 9AIAp" =0 (12.1.43)

Substituting (12.1.43) into (12.1.42), we obtain

Av

1 "
AP+ Ar (v +0AV;V)  — (8An?ApT, =0 (12.1.44)
; | ,

i

With the finite element approximation,

A

Vi = q)a‘faiv l):::(D(XI)a
we have

(Dup — APO? Euip) AP = — Gy AL (AVE; + AV (12.1.45)

The pressure correction as obtained from (12.1.45) can be used to solve (12.1.44) in
which the viscosity term is now restored.

12.2 VORTEX METHODS

Recall that the vortex methods as examined in Section 5.4 utilize the vortex transport
equation in which the terms with pressure gradients vanish upon satisfaction of the
conservation of mass. Thus, the pressure oscillation is not expected to occur in the
solution of the vortex transport equation.
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In many engineering problems, it is not feasible to make two-dimensional simpli-
fications because the flowfield is physically three-dimensional, such as in high-speed
rotational flows and high-Reynolds number turbulent flows. Thus, we begin with three-
dimensional formulations and demonstrate that the two-dimensional analysis can be
derived easily as a simplification of the three-dimensional process if permitted by the
special physical situations.

12.2.1 THREE-DIMENSIONAL ANALYSIS

Three-Dimensional Vorticity Transport Equations
The system of three-dimensional vorticity transport equation takes the form

3
a—(;) +(v-Vio— (o V)v= VW (12.2.1)
with
0=VxvV (12.2.2)
Vip=pV-[(v-V)v] (12.2.3)

The above system provides seven unknowns (o, v, p) and seven equations in three
dimensions. We may use GGM , TGM, or GPG to solve the system of equations (12.2.1-
12.2.3).

Three-Dimensional Biharmonic Equation with Stream Function
Itis also possible to write (12.2.1) in terms of the stream function vector ¥ as defined
in (5.4.15),

0

a(vzw) +(Vx ¥ - V)V — (V2. V)(V x ¥) = vV*W (12.2.4a)
or

0

a(%,ii) + & ik Ve Wi — €iskWr jj Wisr = VWi jikk (12.2.4b)
with

o=V(V-¥) - V¥ = _viy

To obtain the TGM equation for (12.2.4b), we proceed as follows:

1
. d
f W(%)[ ‘Da(a(‘l’i,n‘) + €Wk Wi e — €isk Wy jj Wisr — v‘l’i,jjkk)dﬂdé =0
0 Q
(12.2.5)
Integrate (12.2.5) twice to obtain

IV,
AaﬁﬁiszBj* — BapykVekWyi + Copyimic VpmWyk + Kogij W = — Gy (12.2.6)
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with
Agg = f O Do i dD
Q
B(xB'yk = [ Enjkq)aq)ﬁ.jq)y,mmn ds2
Q
Copyimk =[ EiskPaPp. jj Pry sm d2
Q
K = f Vo 1k P A2
Q
* *
Goi = [ G Wi i dl —f Do kWi jinedl
r r

Here, there are nine variables (W, W), Wi, Wy 2, W3, Wo 1, Va3, W31, and Vi) to be
specified and calculated at each of the eight nodes of the 3-D cubic isoparametric
clement. To this end, we require thirty-two constants to be determined with four of
them (W;, ¥, i, W, 2, ¥, 3) at each of the eight nodes as follows (Figure 12.2.1):

LE ML Em E0 e, €, £2 0, L7, %, €20, W6, 0, L€, U2, €70, 878, EmE2, €,
W, 8N £ WE WL UE, P, £, €L, g

The TGM Newton-Raphson formulation of (12.2.6) takes the form

o AwgFID o gD (12.2.7)

a

AN /
7 (D1

. 6

-1, 1 : k(-l,l,l

v S
(1,-1 -1y

s
s
3

(_1,_1,-1)@/

- 7

Figure 12.21 Hexahedral element for 3-D vortex transport
analysis.
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where
(n+1)(r) (ni1y | At (nt1) g, (n+1) (n+1) g, (n+1)
Ra 7 = Al + T(Baﬁvkqjﬁ’;c Wy Copyimic W Y
(n+1) (m , Al () g, () (n) g, (n)
— Kopbij W, ) — Awpdy W' + 7(Ba8vk%7( Wy, = Copyimi Wi W
_ Kaﬁ&jqjé’;)) o AIGOU' (1228)
(n+1)(r)
3 RV At
I, = — Aupdij + - (Bupyj Wyi + BupykdijWyk = 2Capyiji¥yi — Kopdi)

oB1) = T
IV,
(12.2.9)

First of all, the local element interpolation functions must be polynomials of at
least third degree which will allow the stream function to be linear. The total number
of element unknowns are thirty-two with four at each node (Figure 12.2.1). Explicit
interpolation functions have been described in Elshabka and Chung [1999].

Typical Neumann and Dirichlet boundary conditions associated with the 3-D stream
function vector components are shown in Figure 12.2.2. The Newton-Raphson solution
of (12.2.7) is expected to be free of numerical oscillations because of the Jacobian matrix
which is well-conditioned.

Computations of (12.2.7) based on the definition of the three-dimensional stream
function vector components as given in (5.4.15) have been carried out in Elshabka
[1995]. Some of the highlights are given in Section 12.3.

The Curl of Three-Dimensional Vorticity Transport Equations

The vorticity transport equations (12.2.1) are derived by taking a curl of the momen-
tum equations. In this process, the pressure gradient terms of the momentum equations
are eliminated, resulting in computationally more stable formulations. However, both
vorticity and velocity are coupled together in the vorticity transport equations. The
vorticity transport equations are written in a modified form,

e,
—B(I)T + Egijk_j — Vo jj = 0 (12210)

with

S,; = (V,‘Vj),j

To arrive at a single variable, say velocity alone, we take a curl of (12.2.10) and obtain

0

E(Vi,jj) + 81— (85) i —vijje =0 (12.2.11)
or

0

a(Vi,jj) + (Vivie) kj; = (Vi Vi) kji — Vi jjrk = 0 (12.2.12)

This will allow calculations of velocity by solving (12.2.12) alone. Other options
include solving (12.2.10) and (12.2.11) simultaneously with @ = V x v.
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Figure 122.2 Three-dimensional boundary conditions.

12.2.2 TWO-DIMENSIONAL ANALYSIS
The two-dimensional vorticity transport equation is simplified to

ow

m +(v-V)o =vVe (12.2.13a)
with
©= g_v . ‘;—Z (12.2.13b)
X
AL (12.2.13¢)

8y+8_x
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Here, there are three unknowns (1, v, ) in the system of three equations (12.2.13a,b,c).
The pressure is then calculated from the Poisson equation.

By 3
Vip =2p (a—”ﬁ . —V—“-) (12.2.14)

We may rewrite (12.2.13a) in terms of a scalar stream function, s,

0
5;(‘!1,}1') + €l P i — v i =0 (12.2.15)

The TGM equation for (12.2.15) becomes

g
Au‘s% + BagyUpliy — Keptip = Ga (12.2.16)
where

Acp = f Do i Pp.idE2
Q

By :[ €ikPa Pk Py, j;; dQ
Q2

K =qu’a.fz"1’ﬁ,ud9
Q

Gai =[V$a¢.ii'j”jdr_/V&;mflb‘”nfdr
- r

Here, there are three variables (W, W ;, ¥ ») which are to be specified and calculated at
each of the four nodes of the 2-D isoparametric element. To this end, we require twelve
constants to be determined, with three of them (W, ¥ ;, W ) at each of the four nodes:

LE m En 82,0, €2 8, €5, 7, &, &9

The 2-D TGM Newton-Raphson formulation of (12.2.16) can be constructed simi-
larly as in (12.2.7) for the 3-D case with the boundary conditions reduced to the two-
dimensional geometry from Figure 12.2.2 and Table 12.2.1.

12.2.3 PHYSICAL INSTABILITY IN TWO-DIMENSIONAL INCOMPRESSIBLE FLOWS

Unstable motions occur during the transition from laminar to turbulent flows. To exam-
ine such motions, the so-called Orr-Sommerfeld equation is solved. Here we may begin
with the 2-D velocity and vorticity as a sum of the mean and fluctuation components,

vi=Vvi+v: (i=172) (12.2.17a)
w =0+’ (i=23) (12.2.17b)

where () and (*) denote mean and fluctuation quantities, respectively.

411



412

INCOMPRESSIBLE VISCOUS FLOWS VIA FINITE ELEMENT METHODS

Table 12.2.1 Boundary Conditions (3-D cavity)

Arx =01 i1 =02 =22 = P23 = {3 =32 = Y33
Yra—3 =0
P21 —12=0

At y=20 Y1 =91 =13 =022 =03 =31 =33
Y12 —iz3 =0
Yo — 12 =0

Ary=1 Y1 =011 =13 =P22 =3 =iz = a3

‘L’.’a.Z - ‘1’2_3 = Umax

Yo —2=0

Arz=0,1 Y=Y =d2=02=y21 =22 =33
V32— P23 =0
U153 — 031 =0

Arz=0.5 Y =9 =P =02 =U21 =22 =033

For two-dimensional flows with v; (i = 1, 2), i (i = 3), the vorticity transport equa-
tion takes the form

0 _ _ _ _ 1 _
a—t(—llljf) + €ikViij Vj F Vi€l — WV — b€l — R_6(€ikvk-ijf — ) =0
(12.2.18)
where we have used the following relationship:
© = Vi
" = €V = Eukir b = — P,
Denote
W@y, 1) = g(x, e P = Qe (12.2.19a)
B =p® +ip?" (12.2.19b)

where B(® is the circular frequency and ) is the amplification factor, related as
B=ke, c=c®4ich (12.2.20)

with k& = wave number and ¢ is the velocity of propagation, ( R) and (/) indicating the
real and imaginary parts, respectively. In view of (12.2.18) and (12.2.19) and neglecting

higher order terms (&;;Vi;;V;, q;y’;[jsj,qu;, and €;,Vy,j;), we obtain

—iBqii + €ikViii€irdr + qiiiVj — Rieqiijj =0 (12.2.21)
We further denote that

vi=U(y) and v, =0 (12.2.22a)
and

q(x, y) = Q(y)e'™ (12.2.22b)
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Combine (12.2.22) with (12.2.21) to obtain
~iBQ(ik)* —iBQx» + UnQik) + UQ(ik)® + UQ xn(ik)

- Rie[Q,znz + Q>ik)* =20 n(ik)’] =0 (12.2.23)

Dividing (12.2.23) by ik, we arrive at the Orr-Sommerfeld equation
i
c(KQ-0n)~QUpn—KQU+UQ» + k—Re(Q.zzzz +KQ-28Q0n)=0
(12.2.24)

or

d*Q U i [(d*Q d? i)
(U—c)(—y——kZQ)—Qdy2 _—kRe(dy4 -2k2d—y2+k Q) =0 (12.2.25)

Since (12.2.25) represents variations only in the lateral direction y, the trial functions
are constructed in one dimension. The finite element formulations of (12.2.25) can be
carried out in a standard manner, resulting in the form,

(Kop —cMp)Qp =0 (12.2.26)
with the boundary conditions

Qu=0 and 93Q,/0y=0 (12.2.27)
The expression (12.2.26) is a standard eigenvalue problem,

|Kog — cMyp1Qp =0 (12.2.28)

Eigenvalues are the phase velocity (c) with real and imaginary parts as defined in
(16.6.20),

<0 stable (12.2.29a)
=0 neutral stability (12.2.29b)
c¢M>0 unstable (12.2.29c¢)

Eigenvectors Qg represent fluctuation parts of stream function, which provide fluctua-
tion parts of velocity vi = ;s 7. The eigenvalue problem involved in a complex number
may be solved using the so-called QR algorithm [Wilkinson, 1965].

12.3 EXAMPLE PROBLEMS

Three-Dimensional Vorticity Transport Equations

A convenient benchmark problem is the lid-driven cubic cavity flow as shown in
Figure 12.3.1. The corresponding boundary conditions are shown in Table 12.2.1.

In Figure 12.3.2, we show comparisons between the TGM solution of the 3-D vortic-
ity transport equations (12.2.4) and the results of other approaches reported by Takami
and Kuwahara [1974] with the 20 x 10 x 20 FDM velocity-pressure formulation, Goda
[1979] with the 20 x 10 x 20 FDM velocity-pressure formulation, and Mahallati and
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v SSS
7

A
o
Y

ZSymmetry plane

z=0.5
Figure 12.3.1  Geometry of the cubic cavity flow.

Militzer [1993] with the 21 x 11 x 21 vorticity vector potential formulation using the
finite analytic method (FAM).

In Figure 12.3.3, the x-velocity profiles for Re = 100 at different x-planes are shown.
Note that the effect of boundary layers is clearly evident in the y—z-planes, indicating
that the velocity profiles in planes closer to the wall are less developed due to the
boundary layer effects than in the symmetry planes.

The 3-D cavity streamline distributions for Re = 10 and Re = 100 at different planes
are as shown in Figure 12.3.4. It is noted that, for higher Reynolds number (Re = 100),
the vortex center moves toward downstream.

1.0 !
0.8
/A —— Alshabka and Chung [1999] 1
3 & A A Takami & Kawahara [1974] 1
0.6 7 % ¥ Goda [1979] -
= L : +  + Mahallati & Militzer [1993] .
= [ ]
0.4 ]
0.2 -
B, -
w3
o & -
0.0 1 : L 1 !
-0.4 -=0.2 0.0 0.2 0.4 0.6 0.8 1.0

U[m/s]
Figure 12,32 Velocity profiles on vertical centerline of the 3-D cavity
for Re = 100.
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5
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Y ()

Y(m)

oy,
[/

.

77/
777

() (b)
Figure 12.3.3 Profiles of the x-component of the velocity of the 3-D cavity flow at Re = 100. (a) The
X = 0.5 plane. (b} The x = 0.786 plane.

0.0, 1 TN 2 n 0.0 i i . - i
0.0 Q0.2 2.4 0.6 0.8 1.0 2.0 2.2 0.4 2.8 0.8 1.0

(c) (d)
Figure 12.3.4 The 3-D cavity streamlines (U3). (a) The symmetry plane (z=0.5)

for Re = 10. (b) The symmetry plane (z = 0.5) for Re = 100. (¢) The Z = (.2 plane for
Re = 10. (d) The Z = 0.2 plane for Re = 100.
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Figure 12.3.5 Velocity profile on the 3-D cavity. (a) Vertical centerline. (b) X-horizontal centerline.

Figure 12.3.5 shows the velocity profiles along the vertical and horizontal centerlines
of the symmetry plane of the 3-D cavity. It is seen in Figure 12.3.5a that an increase
in Reynolds number tends to reduce negative x-velocity in the region around y = 0.6,
with the point of maximum negative x-velocity moving downward. At the same time, the
y-velocity becomes less positive upstream and more negative downstream as the
Reynolds number increases, with the position of zero velocity shifted toward down-
stream as shown in Figure 12.3.5b.

Overall, the fourth order partial differential equations of vorticity transport in terms
of the three dimensional stream function vector components lead to an accurate solu-
tion, in which the pressure oscillations are eliminated from the governing equations.

12.4 SUMMARY

Difficulties involved in the satisfaction of mass conservation and prevention of pressure
oscillations discussed in Chapter 5 for FDM are the focus of attention also in this chapter
for FEM. Traditional approaches in FEM include mixed methods, penalty methods,
pressure correction methods, operator splitting methods, and vortex methods. These
methods can be formulated by finite elements using GGM, TGM, or GPG.

Although the incompressible flows occur in many engineering problems and their
accurate solution methods are important, recent trends appear to be an emphasis in
developing computational schemes capable of treating all speed regimes for both in-
compressible and compressible flows and, in particular, interactions between incom-
pressible and compressible flows. Recall that this was the case for the incompressible
flows using FDM. Toward this end, two approaches were introduced: the precondi-
tioning of compressible flow equations and the FDV methods. Similar treatments are
available for FEM applications. These and other topics will be discussed in the next
chapter on compressible flows.
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